
Probabilistic
Circuits

Representations
Inference
Learning
Applications

Antonio Vergari
University of California, Los Angeles

YooJung Choi
University of California, Los Angeles

Robert Peharz
TU Eindhoven

Guy Van den Broeck
University of California, Los Angeles

February 7th, 2020 - AAAI 2020 - New York City

Fully factorized

NaiveBayes AndOrGraphs PDGs

Trees PSDDs CNets LTMs SPNs NADEs

Thin Junction Trees ACs MADEs MAFs VAEs

Polytrees FVSBNs TACs IAFs NAFs RAEs

Mixtures BNs NICE FGs GANs

RealNVP MNs

The Alphabet Soup of probabilistic models
2/158

Fully factorized

NaiveBayes AndOrGraphs PDGs

Trees PSDDs CNets LTMs SPNs NADEs

Thin Junction Trees ACs MADEs MAFs VAEs

Polytrees FVSBNs TACs IAFs NAFs RAEs

Mixtures BNs NICE FGs GANs

RealNVP MNs

Intractable and tractablemodels
3/158

Fully factorized

NaiveBayes AndOrGraphs PDGs

Trees PSDDs CNets LTMs SPNs NADEs

Thin Junction Trees ACs MADEs MAFs VAEs

Polytrees FVSBNs TACs IAFs NAFs RAEs

Mixtures BNs NICE FGs GANs

RealNVP MNs

tractability is a spectrum
4/158

Fully factorized

NaiveBayes AndOrGraphs PDGs

Trees PSDDs CNets LTMs SPNs NADEs

Thin Junction Trees ACs MADEs MAFs VAEs

Polytrees FVSBNs TACs IAFs NAFs RAEs

Mixtures BNs NICE FGs GANs

RealNVP MNs

Expressivemodels without compromises
5/158

Fully factorized

NaiveBayes AndOrGraphs PDGs

Trees PSDDs CNets LTMs SPNs NADEs

Thin Junction Trees ACs MADEs MAFs VAEs

Polytrees FVSBNs TACs IAFs NAFs RAEs

Mixtures BNs NICE FGs GANs

RealNVP MNs

a unifying framework for tractable models
6/158

Why tractable inference?
or expressiveness vs tractability

7/158

Why tractable inference?
or expressiveness vs tractability

Probabilistic circuits
a unified framework for tractable probabilistic modeling

7/158

Why tractable inference?
or expressiveness vs tractability

Probabilistic circuits
a unified framework for tractable probabilistic modeling

Learning circuits
learning their structure and parameters from data

7/158

Why tractable inference?
or expressiveness vs tractability

Probabilistic circuits
a unified framework for tractable probabilistic modeling

Learning circuits
learning their structure and parameters from data

Representations and theory
tracing the boundaries of tractability and connections to other formalisms

7/158

Why tractable inference?
or the inherent trade-off of tractability vs. expressiveness

Why probabilistic inference?

q1: What is the probability that today is a Monday and
there is a traffic jam on 5th Avenue?

© fineartamerica.com

9/158

fineartamerica.com

Why probabilistic inference?

q1: What is the probability that today is a Monday and
there is a traffic jam on 5th Avenue?

q2: Which day is most likely to have a traffic jam on my
route to work?

© fineartamerica.com

9/158

fineartamerica.com

Why probabilistic inference?

q1: What is the probability that today is a Monday and
there is a traffic jam on 5th Avenue?

q2: Which day is most likely to have a traffic jam on my
route to work?

⇒ fitting a predictive model!

© fineartamerica.com

9/158

fineartamerica.com

Why probabilistic inference?

q1: What is the probability that today is a Monday and
there is a traffic jam on 5th Avenue?

q2: Which day is most likely to have a traffic jam on my
route to work?

⇒ fitting a predictive model!

© fineartamerica.com

9/158

fineartamerica.com

Why probabilistic inference?

q1: What is the probability that today is a Monday and
there is a traffic jam on 5th Avenue?

q2: Which day is most likely to have a traffic jam on my
route to work?

⇒ fitting a predictive model!
⇒ answering probabilistic queries on a probabilistic

model of the worldm

q1(m) = ? q2(m) = ?

© fineartamerica.com

9/158

fineartamerica.com

Why probabilistic inference?

q1: What is the probability that today is a Monday and
there is a traffic jam on 5th Avenue?

X = {Day,Time, JamStr1, JamStr2, . . . , JamStrN}

q1(m) = pm(Day = Mon, Jam5th = 1)

© fineartamerica.com

9/158

fineartamerica.com

Why probabilistic inference?

q1: What is the probability that today is a Monday and
there is a traffic jam on 5th Avenue?

X = {Day,Time, JamStr1, JamStr2, . . . , JamStrN}

q1(m) = pm(Day = Mon, Jam5th = 1)

⇒ marginals © fineartamerica.com

9/158

fineartamerica.com

Why probabilistic inference?

q2: Which day is most likely to have a traffic jam on my
route to work?

X = {Day,Time, JamStr1, JamStr2, . . . , JamStrN}

q2(m) = argmaxd pm(Day = d ∧
∨

i∈route JamStri)

© fineartamerica.com

9/158

fineartamerica.com

Why probabilistic inference?

q2: Which day is most likely to have a traffic jam on my
route to work?

X = {Day,Time, JamStr1, JamStr2, . . . , JamStrN}

q2(m) = argmaxd pm(Day = d ∧
∨

i∈route JamStri)

⇒ marginals + MAP + logical events © fineartamerica.com

9/158

fineartamerica.com

Tractable Probabilistic Inference

A class of queriesQ is tractable on a family of probabilistic modelsM
iff for any query q ∈ Q and modelm ∈M
exactly computing q(m) runs in timeO(poly(|m|)).

10/158

Tractable Probabilistic Inference

A class of queriesQ is tractable on a family of probabilistic modelsM
iff for any query q ∈ Q and modelm ∈M
exactly computing q(m) runs in timeO(poly(|m|)).

⇒ often poly will in fact be linear!

10/158

Tractable Probabilistic Inference

A class of queriesQ is tractable on a family of probabilistic modelsM
iff for any query q ∈ Q and modelm ∈M
exactly computing q(m) runs in timeO(poly(|m|)).

⇒ often poly will in fact be linear!

⇒ Note: ifM andQ are compact in the number of random variablesX,
that is, |m|, |q| ∈ O(poly(|X|)), then query time isO(poly(|X|)).

10/158

Why exact inference?
or “What about approximate inference?”

1. No need for approximations when we can be exact

2. We can do exact inference in approximate models [Dechter et al. 2002; Choi

et al. 2010; Lowd et al. 2010; Sontag et al. 2011; Friedman et al. 2018]

3. Approximations shall come with guarantees

4. Approximate inference (even with guarantees) can mislead learners
[Kulesza et al. 2007]5. Approximations can be intractable as well [Dagum et al. 1993; Roth 1996]

11/158

Why exact inference?
or “What about approximate inference?”

1. No need for approximations when we can be exact
⇒ do we lose some expressiveness?

2. We can do exact inference in approximate models [Dechter et al. 2002; Choi

et al. 2010; Lowd et al. 2010; Sontag et al. 2011; Friedman et al. 2018]

3. Approximations shall come with guarantees

4. Approximate inference (even with guarantees) can mislead learners
[Kulesza et al. 2007]5. Approximations can be intractable as well [Dagum et al. 1993; Roth 1996]

11/158

Why exact inference?
or “What about approximate inference?”

1. No need for approximations when we can be exact

2. We can do exact inference in approximate models [Dechter et al. 2002; Choi

et al. 2010; Lowd et al. 2010; Sontag et al. 2011; Friedman et al. 2018]

3. Approximations shall come with guarantees
⇒ sometimes they do, e.g., [Dechter et al. 2007]

4. Approximate inference (even with guarantees) can mislead learners
[Kulesza et al. 2007]5. Approximations can be intractable as well [Dagum et al. 1993; Roth 1996]

11/158

Why exact inference?
or “What about approximate inference?”

1. No need for approximations when we can be exact

2. We can do exact inference in approximate models [Dechter et al. 2002; Choi

et al. 2010; Lowd et al. 2010; Sontag et al. 2011; Friedman et al. 2018]

3. Approximations shall come with guarantees

4. Approximate inference (even with guarantees) can mislead learners
[Kulesza et al. 2007] ⇒ Chaining approximations is flying with a blindfold on

5. Approximations can be intractable as well [Dagum et al. 1993; Roth 1996]

11/158

Why exact inference?
or “What about approximate inference?”

1. No need for approximations when we can be exact

2. We can do exact inference in approximate models [Dechter et al. 2002; Choi

et al. 2010; Lowd et al. 2010; Sontag et al. 2011; Friedman et al. 2018]

3. Approximations shall come with guarantees

4. Approximate inference (even with guarantees) can mislead learners
[Kulesza et al. 2007]

5. Approximations can be intractable as well [Dagum et al. 1993; Roth 1996]

11/158

Stay tuned for...

Next: 1. What are classes of queries?

2. Are my favorite models tractable?

3. Are tractable models expressive?

After: We introduce probabilistic circuits as a unified
framework for tractable probabilistic modeling

12/158

Complete evidence (EVI)

q3: What is the probability that today is a Monday at
12.00 and there is a traffic jam only on 5th
Avenue?

© fineartamerica.com

13/158

fineartamerica.com

Complete evidence (EVI)

q3: What is the probability that today is a Monday at
12.00 and there is a traffic jam only on 5th
Avenue?

X = {Day,Time, Jam5th, JamStr2, . . . , JamStrN}

q3(m) = pm(X = {Mon, 12.00, 1, 0, . . . , 0})

© fineartamerica.com

13/158

fineartamerica.com

Complete evidence (EVI)

q3: What is the probability that today is a Monday at
12.00 and there is a traffic jam only on 5th
Avenue?

X = {Day,Time, Jam5th, JamStr2, . . . , JamStrN}

q3(m) = pm(X = {Mon, 12.00, 1, 0, . . . , 0})

…fundamental inmaximum likelihood learning

θMLE
m = argmaxθ

∏
x∈D pm(x; θ)

© fineartamerica.com

13/158

fineartamerica.com

Generative Adversarial Networks

minθ maxϕ Ex∼pdata(x)

[
logDϕ(x)

]
+ Ez∼p(z)

[
log(1−Dϕ(Gθ(z)))

]

Goodfellow et al., “Generative adversarial nets”, 2014 14/158

Generative Adversarial Networks

minθ maxϕ Ex∼pdata(x)

[
logDϕ(x)

]
+ Ez∼p(z)

[
log(1−Dϕ(Gθ(z)))

]
no explicit likelihood!

⇒ adversarial training instead of MLE
⇒ no tractable EVI

good sample quality
⇒ but lots of samples needed for MC

unstable training ⇒ mode collapse

Goodfellow et al., “Generative adversarial nets”, 2014 15/158

Q:M
GANs

EVI

tractable bands
16/158

Variational Autoencoders

pθ(x) =
∫
pθ(x | z)p(z)dz

an explicit likelihood model!

Rezende et al., “Stochastic backprop. and approximate inference in deep generative models”, 2014
Kingma et al., “Auto-Encoding Variational Bayes”, 2014 17/158

Variational Autoencoders

log pθ(x) ≥ Ez∼qϕ(z|x)
[
log pθ(x | z)

]
−KL(qϕ(z | x)||p(z))

an explicit likelihood model!

... but computing log pθ(x) is intractable

⇒ an infinite and uncountable mixture
⇒ no tractable EVI

we need to optimize the ELBO…
⇒ which is “tricky” [Alemi et al. 2017; Dai

et al. 2019; Ghosh et al. 2019]

18/158

Q:M
GANs

VAEs

EVI

tractable bands
19/158

Autoregressive models

pθ(x) =
∏

i pθ(xi | x1, x2, . . . , xi−1)

an explicit likelihood!

…as a product of factors ⇒ tractable EVI!

many neural variants
NADE [Larochelle et al. 2011],
MADE [Germain et al. 2015]
PixelCNN [Salimans et al. 2017],
PixelRNN [Oord et al. 2016]

X̄1 X̄2 X̄3 X̄4

.

X1 X2 X3 X4

20/158

Marginal queries (MAR)

q1: What is the probability that today is a Monday at
12.00 and there is a traffic jam only on 5th
Avenue?

© fineartamerica.com

21/158

fineartamerica.com

Marginal queries (MAR)

q1: What is the probability that today is a Monday at
12.00 and there is a traffic jam only on 5th
Avenue?

q1(m) = pm(Day = Mon, Jam5th = 1)

© fineartamerica.com

21/158

fineartamerica.com

Marginal queries (MAR)

q1: What is the probability that today is a Monday at
12.00 and there is a traffic jam only on 5th
Avenue?

q1(m) = pm(Day = Mon, Jam5th = 1)

General: pm(e) =
∫
pm(e,H) dH

where E ⊂ X, H = X \ E © fineartamerica.com

21/158

fineartamerica.com

Marginal queries (MAR)

q1: What is the probability that today is a Monday at
12.00 and there is a traffic jam only on 5th
Avenue?

q1(m) = pm(Day = Mon, Jam5th = 1)

General: pm(e) =
∫
pm(e,H) dH

and if you can answer MAR queries,
then you can also do conditional queries (CON):

pm(q | e) = pm(q, e)

pm(e)

© fineartamerica.com

21/158

fineartamerica.com

Tractable MAR : scene understanding

Fast and exact marginalization over unseen or “do not care” parts in the scene
Stelzner et al., “Faster Attend-Infer-Repeat with Tractable Probabilistic Models”, 2019
Kossen et al., “Structured Object-Aware Physics Prediction for Video Modeling and Planning”, 2019 22/158

Autoregressive models

pθ(x) =
∏

i pθ(xi | x1, x2, . . . , xi−1)

an explicit likelihood!

…as a product of factors ⇒ tractable EVI!

X̄1 X̄2 X̄3 X̄4

.

X1 X2 X3 X4

23/158

Autoregressive models

pθ(x) =
∏

i pθ(xi | x1, x2, . . . , xi−1)

an explicit likelihood!

…as a product of factors ⇒ tractable EVI!

... but we need to fix a variable ordering
⇒ only some MAR queries are tractable

for one ordering

X̄1 X̄2 X̄3 X̄4

.

X1 X2 X3 X4

24/158

Normalizing flows

pX(x) = pZ(f
−1(x))

∣∣∣det(δf−1

δx

)∣∣∣
an explicit likelihood ⇒ tractable EVI!

... computing the determinant of the Jacobian

Z

X

f−1f

25/158

Normalizing flows

pX(x) = pZ(f
−1(x))

∣∣∣det(δf−1

δx

)∣∣∣
an explicit likelihood ⇒ tractable EVI!

... computing the determinant of the Jacobian

MAR is generally intractable
⇒ unless f is a “trivial” bijection

Z

X

f−1f

26/158

Q:M
GANs

VAEs

Flows

EVI MAR CON

I

tractable bands
27/158

Probabilistic Graphical Models (PGMs)

Declarative semantics: a clean separation of modeling assumptions from inference

Nodes: random variables
Edges: dependencies

+

Inference: conditioning [Darwiche 2001; Sang et al. 2005]

elimination [Zhang et al. 1994; Dechter 1998]

message passing [Yedidia et al. 2001; Dechter

et al. 2002; Choi et al. 2010; Sontag et al. 2011]

X1

X2

X3

X4

X5

28/158

Complexity of MAR on PGMs

Exact complexity: Computing MAR and CON is #P-complete
⇒ [Cooper 1990; Roth 1996]

Approximation complexity: Computing MAR and COND approximately
within a relative error of 2n

1−ϵ

for any fixed ϵ is NP-hard
⇒ [Dagum et al. 1993; Roth 1996]

29/158

Why? Treewidth!

Treewidth:

Informally, how tree-like is the graphical modelm?
Formally, the minimum width of any tree-decomposition ofm.

Fixed-parameter tractable: MAR and CON on a graphical modelm with
treewidthw take timeO(|X| · 2w), which is linear for fixed widthw
[Dechter 1998; Koller et al. 2009]. ⇒ what about bounding the treewidth by design?

30/158

Low-treewidth PGMs

X1

X2

X3

X4

X5

Trees
[Meilă et al. 2000]

X1

X2

X3

X4

X5

Polytrees
[Dasgupta 1999]

X1 X2

X1 X3 X4

X3 X5

Thin Junction trees
[Bach et al. 2001]

If treewidth is bounded (e.g.≊ 20), exact MAR and CON inference is possible in practice

31/158

Tree distributions

A tree-structured BN [Meilă et al. 2000] where eachXi ∈ X has at most one parent PaXi
.

X1

X2

X3

X4

X5

p(X) =
∏n

i=1
p(xi|Paxi

)

Exact querying: EVI, MAR, CON tasks linear for trees: O(|X|)
Exact learning from d examples takesO(|X|2 · d) with the classical Chow-Liu algorithm1

1Chow et al., “Approximating discrete probability distributions with dependence trees”, 1968 32/158

Q:M
GANs

VAEs

Flows

Trees

EVI MAR CON

I
I I

tractable bands
33/158

What do we lose?

Expressiveness: Ability to represent rich and complex classes of distributions

X1

X2

X3

X4

X5

Bounded-treewidth PGMs lose the ability to represent all possible distributions …

Cohen et al., “On the expressive power of deep learning: A tensor analysis”, 2016
Martens et al., “On the Expressive Efficiency of Sum Product Networks”, 2014 34/158

Mixtures

Mixtures as a convex combination of k (simpler) probabilistic models

−10 −5 0 5 10

X1

0.00

0.05

0.10

0.15

0.20

0.25

p(
X

1)

p(X) = w1·p1(X)+w2·p2(X)

EVI, MAR, CON queries scale linearly in k

35/158

Mixtures

Mixtures as a convex combination of k (simpler) probabilistic models

−10 −5 0 5 10

X1

0.00

0.05

0.10

0.15

0.20

0.25

p(
X

1)

p(X) =p(Z = 1) · p1(X|Z = 1)

+ p(Z = 2) · p2(X|Z = 2)

Mixtures are marginalizing a categorical latent variable Z with k values
⇒ increased expressiveness

35/158

Expressiveness and efficiency

Expressiveness: Ability to represent rich and effective classes of functions

⇒ mixture of Gaussians can approximate any distribution!

Cohen et al., “On the expressive power of deep learning: A tensor analysis”, 2016
Martens et al., “On the Expressive Efficiency of Sum Product Networks”, 2014 36/158

Expressiveness and efficiency

Expressiveness: Ability to represent rich and effective classes of functions

⇒ mixture of Gaussians can approximate any distribution!

Expressive efficiency (succinctness) Ability to represent rich and effective classes of
functions compactly

⇒ but how many components does a Gaussian mixture need?

Cohen et al., “On the expressive power of deep learning: A tensor analysis”, 2016
Martens et al., “On the Expressive Efficiency of Sum Product Networks”, 2014 36/158

How expressive efficient are mixture?

37/158

How expressive efficient are mixture?

37/158

How expressive efficient are mixture?

37/158

How expressive efficient are mixture?

37/158

How expressive efficient are mixture?

37/158

How expressive efficient are mixture?

37/158

How expressive efficient are mixture?

37/158

How expressive efficient are mixture?

⇒ stack mixtures like in deep generative models
37/158

Q:M
GANs

VAEs

Flows

Trees

Mixtures

EVI MAR CON

I
I I
I I

tractable bands

38/158

Maximum A Posteriori (MAP)
aka Most Probable Explanation (MPE)

q5: Which combination of roads is most likely to be
jammed on Monday at 9am?

© fineartamerica.com

39/158

fineartamerica.com

Maximum A Posteriori (MAP)
aka Most Probable Explanation (MPE)

q5: Which combination of roads is most likely to be
jammed on Monday at 9am?

q5(m) = argmaxj pm(j1, j2, . . . | Day=M,Time=9)

© fineartamerica.com

39/158

fineartamerica.com

Maximum A Posteriori (MAP)
aka Most Probable Explanation (MPE)

q5: Which combination of roads is most likely to be
jammed on Monday at 9am?

q5(m) = argmaxj pm(j1, j2, . . . | Day=M,Time=9)

General: argmaxq pm(q | e)

where Q ∪ E = X © fineartamerica.com

39/158

fineartamerica.com

Maximum A Posteriori (MAP)
aka Most Probable Explanation (MPE)

q5: Which combination of roads is most likely to be
jammed on Monday at 9am?

…intractable for latent variable models!

max
q

pm(q | e) = max
q

∑
z

pm(q, z | e)

̸=
∑
z

max
q

pm(q, z | e)
© fineartamerica.com

39/158

fineartamerica.com

MAP inference : image inpainting
7.3 Face Image Completion

Original

Covered

MEAN

P
D

|
{
z

}

BACK-ORIG

SUM

BACK-MPE

D
V

|
{
z

}

BACK-ORIG

SUM

BACK-MPE

M
er
ge

|
{
z

}

BACK-ORIG

SUM

BACK-MPE

Figure 7.3: Examples of face image reconstructions, left half is covered.

– 121 –

7.3 Face Image Completion

Original

Covered

MEAN

P
D

|
{
z

}

BACK-ORIG

SUM

BACK-MPE

D
V

|
{
z

}

BACK-ORIG

SUM

BACK-MPE

M
er
ge

|
{
z

}

BACK-ORIG

SUM

BACK-MPE

Figure 7.3: Examples of face image reconstructions, left half is covered.

– 121 –

Predicting arbitrary patches
given a singlemodel
without the need of retraining.

Poon et al., “Sum-Product Networks: a New Deep Architecture”, 2011
Sguerra et al., “Image classification using sum-product networks for autonomous flight of micro
aerial vehicles”, 2016 40/158

Q:M
GANs

VAEs

Flows

Trees

Mixtures

EVI MAR CON MAP

I
I I
I

tractable bands
41/158

Marginal MAP (MMAP)
aka Bayesian Network MAP

q6: Which combination of roads is most likely to be
jammed on Monday at 9am?

© fineartamerica.com

42/158

fineartamerica.com

Marginal MAP (MMAP)
aka Bayesian Network MAP

q6: Which combination of roads is most likely to be
jammed on Monday at 9am?

q6(m) = argmaxj pm(j1, j2, . . . | Time=9)

© fineartamerica.com

42/158

fineartamerica.com

Marginal MAP (MMAP)
aka Bayesian Network MAP

q6: Which combination of roads is most likely to be
jammed on Monday at 9am?

q6(m) = argmaxj pm(j1, j2, . . . | Time=9)

General: argmaxq pm(q | e)
= argmaxq

∑
h pm(q,h | e)

where Q ∪H ∪ E = X

© fineartamerica.com

42/158

fineartamerica.com

Marginal MAP (MMAP)
aka Bayesian Network MAP

q6: Which combination of roads is most likely to be
jammed on Monday at 9am?

q6(m) = argmaxj pm(j1, j2, . . . | Time=9)

⇒ NPPP-complete [Park et al. 2006]

⇒ NP-hard for trees [Campos 2011]

⇒ NP-hard even for Naive Bayes [ibid.]
© fineartamerica.com

42/158

fineartamerica.com

Q:M
GANs

VAEs

Flows

Trees

Mixtures

EVI MAR CON MAP MMAP

I
I
I

tractable bands
43/158

Advanced queries

q2: Which day is most likely to have a traffic jam on
my route to work?

© fineartamerica.com

Bekker et al., “Tractable Learning for Complex Probability Queries”, 2015 44/158

fineartamerica.com

Advanced queries

q2: Which day is most likely to have a traffic jam on
my route to work?

q2(m) = argmaxd pm(Day = d∧
∨

i∈route JamStr i)

⇒ marginals + MAP + logical events

© fineartamerica.com

Bekker et al., “Tractable Learning for Complex Probability Queries”, 2015 44/158

fineartamerica.com

Advanced queries

q2: Which day is most likely to have a traffic jam on
my route to work?

q7: What is the probability of seeing more traffic jams
in Uptown than Midtown?

© fineartamerica.com

Bekker et al., “Tractable Learning for Complex Probability Queries”, 2015 44/158

fineartamerica.com

Advanced queries

q2: Which day is most likely to have a traffic jam on
my route to work?

q7: What is the probability of seeing more traffic jams
in Uptown than Midtown?

⇒ counts + group comparison

© fineartamerica.com

Bekker et al., “Tractable Learning for Complex Probability Queries”, 2015 44/158

fineartamerica.com

Advanced queries

q2: Which day is most likely to have a traffic jam on
my route to work?

q7: What is the probability of seeing more traffic jams
in Uptown than Midtown?

and more:

expected classification agreement
[Oztok et al. 2016; Choi et al. 2017, 2018]

expected predictions [Khosravi et al. 2019b] © fineartamerica.com

Bekker et al., “Tractable Learning for Complex Probability Queries”, 2015 44/158

fineartamerica.com

Q:M
GANs

VAEs

Flows

Trees

Mixtures

EVI MAR CON MAP MMAP ADV

I
I
I

tractable bands
45/158

Q:M
GANs

VAEs

Flows

Trees

Mixtures

?

EVI MAR CON MAP MMAP ADV

I
I
I
I I
tractable bands

46/158

Fully factorized models

A completely disconnected graph. Example: Product of Bernoullis (PoBs)

X1

X2

X3

X4

X5

p(x) =
∏n

i=1
p(xi)

Complete evidence, marginals and MAP, MMAP inference is linear!

⇒ but definitely not expressive…

47/158

Q:M
GANs

VAEs

Flows

Trees

Mixtures

Factorized

EVI MAR CON MAP MMAP ADV

I
I
I
I I

tractable bands
48/158

m
or
e
ex
pr
es
si
ve

effi
ci
en

t

le
ss

ex
pr
es
si
ve

effi
ci
en

t

larger tractable bands

smaller tractable bands

49/158

m
or
e
ex
pr
es
si
ve

effi
ci
en

t

le
ss

ex
pr
es
si
ve

effi
ci
en

t

larger tractable bands

smaller tractable bands

BNs

NFs

NADEs

MNs
VAEs

GANs

Expressive models are not very tractable…
50/158

m
or
e
ex
pr
es
si
ve

effi
ci
en

t

le
ss

ex
pr
es
si
ve

effi
ci
en

t

larger tractable bands

smaller tractable bands

BNs

NFs

NADEs

MNs
VAEs

GANs

Fully factorized

NB
Trees

Polytrees
TJT

LTM

Mixtures

and tractable ones are not very expressive…
51/158

m
or
e
ex
pr
es
si
ve

effi
ci
en

t

le
ss

ex
pr
es
si
ve

effi
ci
en

t

larger tractable bands

smaller tractable bands

BNs

NFs

NADEs

MNs
VAEs

GANs

Fully factorized

NB
Trees

Polytrees
TJT

LTM

Mixtures

X

probabilistic circuits are at the “sweet spot”
52/158

Probabilistic Circuits

Probabilistic circuits

A probabilistic circuit C over variablesX is a computational graph encoding a
(possibly unnormalized) probability distribution p(X)

54/158

Probabilistic circuits

A probabilistic circuit C over variablesX is a computational graph encoding a
(possibly unnormalized) probability distribution p(X)

⇒ operational semantics!

54/158

Probabilistic circuits

A probabilistic circuit C over variablesX is a computational graph encoding a
(possibly unnormalized) probability distribution p(X)

⇒ operational semantics!

⇒ by constraining the graph we can make inference tractable…

54/158

Stay tuned for...

Next: 1. What are the building blocks of probabilistic circuits?
⇒ How to build a tractable computational graph?

2. For which queries are probabilistic circuits tractable?
⇒ tractable classes induced by structural properties

After: How can probabilistic circuits be learned?

55/158

Distributions as computational graphs

X

Base case: a single node encoding a distribution
⇒ e.g., Gaussian PDF continuous random variable

56/158

Distributions as computational graphs

¬X

Base case: a single node encoding a distribution
⇒ e.g., indicators forX or ¬X for Boolean random variable

56/158

Distributions as computational graphs

x

X

pX(x)

Simple distributions are tractable “black boxes” for:

EVI: output p(x) (density or mass)

MAR: output 1 (normalized) or Z (unnormalized)

MAP: output the mode

56/158

Distributions as computational graphs

1.3

X

.33

Simple distributions are tractable “black boxes” for:

EVI: output p(x) (density or mass)

MAR: output 1 (normalized) or Z (unnormalized)

MAP: output the mode

56/158

Factorizations as product nodes
Divide and conquer complexity

p(X1, X2, X3) = p(X1) · p(X2) · p(X3)

X1 X2 X3

X1

X2

X3

0.0

0.5

1.0

1.5

2.0

2.5

3.0

⇒ e.g. modeling a multivariate Gaussian with diagonal covariance matrix…
57/158

Factorizations as product nodes
Divide and conquer complexity

p(X1, X2, X3) = p(X1) · p(X2) · p(X3)

X1 X2 X3

X1

X2

X3

0.0

0.5

1.0

1.5

2.0

2.5

3.0 ×

X1 X2 X3

⇒ …with a product node over some univariate Gaussian distribution
57/158

Factorizations as product nodes
Divide and conquer complexity

p(x1, x2, x3) = p(x1) · p(x2) · p(x3)

X1 X2 X3

X1

X2

X3

0.0

0.5

1.0

1.5

2.0

2.5

3.0 ×

0.8

X1

0.5

X2

0.9

X3

⇒ feedforward evaluation
57/158

Factorizations as product nodes
Divide and conquer complexity

p(x1, x2, x3) = p(x1) · p(x2) · p(x3)

X1 X2 X3

X1

X2

X3

0.0

0.5

1.0

1.5

2.0

2.5

3.0 .36

0.8

X1

0.5

X2

0.9

X3

⇒ feedforward evaluation
57/158

Mixtures as sum nodes
Enhance expressiveness

−10 −5 0 5 10

X1

0.00

0.05

0.10

0.15

0.20

0.25

p(
X

1)

p(X) = w1·p1(X)+w2·p2(X)

⇒ e.g. modeling a mixture of Gaussians…

58/158

Mixtures as sum nodes
Enhance expressiveness

X1 X1

w1 w2

p(x) = 0.2·p1(x)+0.8·p2(x)

⇒ …as weighted a sum node over Gaussian input distributions

58/158

Mixtures as sum nodes
Enhance expressiveness

.44

0.2

X1

0.5

X1

0.2 0.8

p(x) = 0.2·p1(x)+0.8·p2(x)

⇒ by stacking them we increase expressive efficiency

58/158

A grammar for tractable models
Recursive semantics of probabilistic circuits

X1

59/158

A grammar for tractable models
Recursive semantics of probabilistic circuits

X1 X1 X1

w1 w2

59/158

A grammar for tractable models
Recursive semantics of probabilistic circuits

X1 X1 X1

w1 w2

×

X1 X2

59/158

A grammar for tractable models
Recursive semantics of probabilistic circuits

X1 X1 X1

w1 w2

×

X1 X2

×

X1 X2

×

X1 X2

w1 w2

59/158

A grammar for tractable models
Recursive semantics of probabilistic circuits

X1 X1 X1

w1 w2

×

X1 X2

×

X1 X2

×

X1 X2

w1 w2

× ×

× ×× ×

X1

X2

X1

X2

X3 X4 X3 X4

59/158

Probabilistic circuits are not PGMs!

They are probabilistic and graphical, however …

PGMs Circuits

Nodes: random variables unit of computations
Edges: dependencies order of execution

Inference: conditioning

elimination

message passing

feedforward pass

backward pass

⇒ they are computational graphs, more like neural networks

60/158

Just sum, products and distributions?

X1

X2

X3

X4

X5

X6

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

just arbitrarily compose them like a neural network!
61/158

Just sum, products and distributions?

X1

X2

X3

X4

X5

X6

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

just arbitrarily compose them like a neural network!
⇒ structural constraints needed for tractability 61/158

Which structural constraints
to ensure tractability?

Decomposability

A product node is decomposable if its children depend on disjoint sets of variables
⇒ just like in factorization!

×

X1 X2 X3

decomposable circuit

×

X1 X1 X3

non-decomposable circuit

Darwiche et al., “A knowledge compilation map”, 2002 63/158

Smoothness
aka completeness

A sum node is smooth if its children depend of the same variable sets
⇒ otherwise not accounting for some variables

X1 X1

w1 w2

smooth circuit

X1 X2

w1 w2

non-smooth circuit

⇒ smoothness can be easily enforced [Shih et al. 2019]

Darwiche et al., “A knowledge compilation map”, 2002 64/158

Smoothness + decomposability = tractable MAR

Computing arbitrary integrations (or summations)
⇒ linear in circuit size!

E.g., suppose we want to compute Z:∫
p(x)dx

65/158

Smoothness + decomposability = tractable MAR

If p(x) =
∑

i wipi(x), (smoothness):

∫
p(x)dx =

∫ ∑
i

wipi(x)dx =

=
∑
i

wi

∫
pi(x)dx

⇒ integrals are “pushed down” to children

× ×

× ×× ×

X1

X2

X1

X2

X3 X4 X3 X4

65/158

Smoothness + decomposability = tractable MAR

If p(x,y, z) = p(x)p(y)p(z), (decomposability):

∫ ∫ ∫
p(x,y, z)dxdydz =

=

∫ ∫ ∫
p(x)p(y)p(z)dxdydz =

=

∫
p(x)dx

∫
p(y)dy

∫
p(z)dz

⇒ integrals decompose into easier ones

× ×

× ×× ×

X1

X2

X1

X2

X3 X4 X3 X4

65/158

Smoothness + decomposability = tractable MAR

Forward pass evaluation for MAR
⇒ linear in circuit size!

E.g. to compute p(x2, x4):

leafs overX1 andX3 outputZi =
∫
p(xi)dxi

⇒ for normalized leaf distributions: 1.0

leafs overX2 andX4 output EVI

feedforward evaluation (bottom-up)

× ×

× ×× ×

X1

X2

X1

X2

X3 X4 X3 X4

65/158

Smoothness + decomposability = tractable MAR

Forward pass evaluation for MAR
⇒ linear in circuit size!

E.g. to compute p(x2, x4):

leafs overX1 andX3 outputZi =
∫
p(xi)dxi

⇒ for normalized leaf distributions: 1.0

leafs overX2 andX4 output EVI

feedforward evaluation (bottom-up)

× ×

× ×× ×

1.0

X1

.61

X2

1.0

X1

.83

X2

1.0

X3

.58

X4

1.0

X3

.77

X4

65/158

Smoothness + decomposability = tractable MAR

Forward pass evaluation for MAR
⇒ linear in circuit size!

E.g. to compute p(x2, x4):

leafs overX1 andX3 outputZi =
∫
p(xi)dxi

⇒ for normalized leaf distributions: 1.0

leafs overX2 andX4 output EVI

feedforward evaluation (bottom-up)

.35 .64

.49

.58 .77

.58 .77.58 .77

1.0

X1

.61

X2

1.0

X1

.83

X2

1.0

X3

.58

X4

1.0

X3

.77

X4

65/158

Smoothness + decomposability = tractable CON

Analogously, for arbitrary conditional queries:

p(q | e) = p(q, e)

p(e)

1. evaluate p(q, e) ⇒ one feedforward pass

2. evaluate p(e) ⇒ another feedforward pass

⇒ …still linear in circuit size!

× ×

× ×× ×

X1

X2

X1

X2

X3 X4 X3 X4

66/158

Tractable MAR : Robotics

Pixels for scenes and abstractions for maps
decompose along circuit structures.

Fast and exact marginalization over unseen
or “do not care” scene and map parts for
hierarchical planning robot executions

Pronobis et al., “Learning Deep Generative Spatial Models for Mobile Robots”, 2016
Pronobis et al., “Deep spatial affordance hierarchy: Spatial knowledge representation for planning
in large-scale environments”, 2017
Zheng et al., “Learning graph-structured sum-product networks for probabilistic semantic maps”,
2018 67/158

Smoothness + decomposability = tractable MAP

We can also decompose bottom-up a MAP query:

argmax
q

p(q | e)

68/158

Smoothness + decomposability = tractable MAP

We cannot decompose bottom-up a MAP query:

argmax
q

p(q | e)

since for a sum node we are marginalizing out a latent variable

argmax
q

∑
i

wipi(q, e) = argmax
q

∑
z

p(q, z, e) ̸=
∑
z

argmax
q

p(q, z, e)

⇒ MAP for latent variable models is intractable [Conaty et al. 2017]

69/158

Determinism
aka selectivity

A sum node is deterministic if the output of only one children is non zero for any input
⇒ e.g. if their distributions have disjoint support

×

X1 ≤ θ X2

×

X1 > θ X2

w1 w2

deterministic circuit

×

X1 X2

×

X1 X2

w1 w2

non-deterministic circuit 70/158

Determinism + decomposability = tractable MAP

Computing maximization with arbitrary evidence e
⇒ linear in circuit size!

E.g., suppose we want to compute:

max
q

p(q | e)

× ×

× ×× ×

X1

X2

X1

X2

X3 X4 X3 X4

71/158

Determinism + decomposability = tractable MAP

If p(q, e) =
∑

i wipi(q, e) = maxi wipi(q, e),
(deterministic sum node):

max
q

p(q, e) = max
q

∑
i

wipi(q, e)

= max
q

max
i

wipi(q, e)

= max
i

max
q

wipi(q, e)

⇒ one non-zero child term, thus sum is max

× ×

× ×× ×

X1

X2

X1

X2

X3 X4 X3 X4

71/158

Determinism + decomposability = tractable MAP

If p(q, e) = p(qx, ex,qy, ey) = p(qx, ex)p(qy, ey)
(decomposable product node):

max
q

p(q | e) = max
q

p(q, e)

= max
qx,qy

p(qx, ex,qy, ey)

= max
qx

p(qx, ex),max
qy

p(qy, ey)

⇒ solving optimization independently

× ×

× ×× ×

X1

X2

X1

X2

X3 X4 X3 X4

71/158

Determinism + decomposability = tractable MAP

Evaluating the circuit twice:
bottom-up and top-down ⇒ still linear in circuit size! × ×

× ×× ×

X1

X2

X1

X2

X3 X4 X3 X4

71/158

Determinism + decomposability = tractable MAP

Evaluating the circuit twice:
bottom-up and top-down ⇒ still linear in circuit size!

E.g., for argmaxx1,x3
p(x1, x3 | x2, x4):

1. turn sum into max nodes and
distributions into max distributions

2. evaluate p(x2, x4) bottom-up

3. retrieve max activations top-down

4. compute MAP states forX1 andX3 at leaves

× ×

max

max max

× ×× ×

X1

X2

X1

X2

X3 X4 X3 X4

71/158

Determinism + decomposability = tractable MAP

Evaluating the circuit twice:
bottom-up and top-down ⇒ still linear in circuit size!

E.g., for argmaxx1,x3
p(x1, x3 | x2, x4):

1. turn sum into max nodes and
distributions into max distributions

2. evaluate p(x2, x4) bottom-up

3. retrieve max activations top-down

4. compute MAP states forX1 andX3 at leaves

× ×

max

max max

× ×× ×

.66

X1

.61

X2

.2

X1

.83

X2

1.2

X3

.58

X4

1.8

X3

.77

X4

71/158

Determinism + decomposability = tractable MAP

Evaluating the circuit twice:
bottom-up and top-down ⇒ still linear in circuit size!

E.g., for argmaxx1,x3
p(x1, x3 | x2, x4):

1. turn sum into max nodes and
distributions into max distributions

2. evaluate p(x2, x4) bottom-up

3. retrieve max activations top-down

4. compute MAP states forX1 andX3 at leaves

.35 .64

.49

.58 .77

.58 .77.58 .77

.66

X1

.61

X2

.2

X1

.83

X2

1.2

X3

.58

X4

1.8

X3

.77

X4

71/158

Determinism + decomposability = tractable MAP

Evaluating the circuit twice:
bottom-up and top-down ⇒ still linear in circuit size!

E.g., for argmaxx1,x3
p(x1, x3 | x2, x4):

1. turn sum into max nodes and
distributions into max distributions

2. evaluate p(x2, x4) bottom-up

3. retrieve max activations top-down

4. compute MAP states forX1 andX3 at leaves

.35 .64

.49

.58 .77

.58 .77.58 .77

.66

X1

.61

X2

.2

X1

.83

X2

1.2

X3

.58

X4

1.8

X3

.77

X4

71/158

MAP inference : image segmentation

Semantic segmentation is MAP over joint pixel and label space

Even approximate MAP for non-deterministic circuits (SPNs) delivers good performances.
Rathke et al., “Locally adaptive probabilistic models for global segmentation of pathological oct
scans”, 2017
Yuan et al., “Modeling spatial layout for scene image understanding via a novel multiscale
sum-product network”, 2016
Friesen et al., “Submodular Sum-product Networks for Scene Understanding”, 2016 72/158

Determinism + decomposability = tractable MMAP

Analogously, we could can also do a MMAP query:

argmax
q

∑
z

p(q, z | e)

73/158

Determinism + decomposability = tractable MMAP

We cannot decompose a MMAP query!

argmax
q

∑
z

p(q, z | e)

we still have latent variables to marginalize…

⇒ The final part of this tutorial will talk more about advanced queries and
their tractability properties.

74/158

m
or
e
ex
pr
es
si
ve

effi
ci
en

t

le
ss

ex
pr
es
si
ve

effi
ci
en

t

more tractable queries

less tractable queries

BNs

NFs

NADEs

MNs
VAEs

GANs

Fully factorized

NB
Trees

Polytrees
TJT

LTM

Mixtures

?

where are probabilistic circuits?
75/158

m
or
e
ex
pr
es
si
ve

effi
ci
en

t

le
ss

ex
pr
es
si
ve

effi
ci
en

t

more tractable queries

less tractable queries

PCs

PCs

PCs

BNs

NFs

PCsPCs

NADEs

MNs
VAEs

GANs

Fully factorized

NB
Trees

Polytrees
TJT

LTM

Mixtures

tractability vs expressive efficiency
76/158

m
or
e
ex
pr
es
si
ve

effi
ci
en

t

le
ss

ex
pr
es
si
ve

effi
ci
en

t

more tractable queries

less tractable queries

SPNs

PSDDs

CNets

BNs

NFs

ACsAoGs

NADEs

MNs
VAEs

GANs

Fully factorized

NB
Trees

Polytrees
TJT

LTM

Mixtures

tractability vs expressive efficiency
77/158

How expressive are probabilistic circuits?

Measuring average test set log-likelihood on 20 density estimation benchmarks

Comparing against intractable models:

Bayesian networks (BN) [Chickering 2002] with sophisticated context-specific CPDs

MADEs [Germain et al. 2015]

VAEs [Kingma et al. 2014] (IWAE ELBO [Burda et al. 2015])

Gens et al., “Learning the Structure of Sum-Product Networks”, 2013
Peharz et al., “Random sum-product networks: A simple but effective approach to probabilistic
deep learning”, 2019 78/158

How expressive are probabilistic circuits?
density estimation benchmarks

dataset best circuit BN MADE VAE dataset best circuit BN MADE VAE

nltcs -5.99 -6.02 -6.04 -5.99 dna -79.88 -80.65 -82.77 -94.56
msnbc -6.04 -6.04 -6.06 -6.09 kosarek -10.52 -10.83 - -10.64
kdd -2.12 -2.19 -2.07 -2.12 msweb -9.62 -9.70 -9.59 -9.73
plants -11.84 -12.65 -12.32 -12.34 book -33.82 -36.41 -33.95 -33.19
audio -39.39 -40.50 -38.95 -38.67 movie -50.34 -54.37 -48.7 -47.43
jester -51.29 -51.07 -52.23 -51.54 webkb -149.20 -157.43 -149.59 -146.9
netflix -55.71 -57.02 -55.16 -54.73 cr52 -81.87 -87.56 -82.80 -81.33
accidents -26.89 -26.32 -26.42 -29.11 c20ng -151.02 -158.95 -153.18 -146.9
retail -10.72 -10.87 -10.81 -10.83 bbc -229.21 -257.86 -242.40 -240.94
pumbs* -22.15 -21.72 -22.3 -25.16 ad -14.00 -18.35 -13.65 -18.81

79/158

Hybrid intractable + tractable EVI

VAEs as intractable input distributions, orchestrated by a circuit on top

⇒ decomposing a joint ELBO: better lower-bounds than a single VAE
⇒ more expressive efficient and less data hungry

Tan et al., “Hierarchical Decompositional Mixtures of Variational Autoencoders”, 2019 80/158

Learning Probabilistic Circuits

Learning probabilistic circuits

A probabilistic circuit C over variablesX is a computational graph encoding
a (possibly unnormalized) probability distribution p(X) parameterized byΩ

82/158

Learning probabilistic circuits

A probabilistic circuit C over variablesX is a computational graph encoding
a (possibly unnormalized) probability distribution p(X) parameterized byΩ

Learning a circuit C from dataD can therefore involve learning the graph
(structure) and/or its parameters

82/158

Learning probabilistic circuits
Parameters Structure

G
en

er
at
iv
e

? ?

Di
sc
ri
m
in
at
iv
e

? ?

83/158

Stay tuned for...

Next: 1. How to learn circuit parameters?
⇒ convex optimization, EM, SGD, Bayesian learning, …

2. How to learn the structure of circuits?
⇒ local search, random structures, ensembles, …

After: How circuits are related to other tractable models?

84/158

Learning probabilistic circuits

Probabilistic circuits are (peculiar) neural networks… just backprop with SGD!

85/158

Learning probabilistic circuits

Probabilistic circuits are (peculiar) neural networks… just backprop with SGD!

…end of Learning section!

85/158

Learning probabilistic circuits

Probabilistic circuits are (peculiar) neural networks… just backprop with SGD!

wait but…

SGD is slow to converge…can we do better?

How to learn normalized weights?

Can we exploit structural properties somehow?

85/158

Learning input distributions
As simple as tossing a coin

X1

The simplest PC: a single input distribution pL with parameters θ
⇒ maximum likelihood (ML) estimation over dataD

86/158

Learning input distributions
As simple as tossing a coin

X1

The simplest PC: a single input distribution pL with parameters θ
⇒ maximum likelihood (ML) estimation over dataD

E.g. Bernoulli with parameter θ

θ̂ML =

∑
x∈D 1[x = 1] + α

|D|+ 2α
⇒ Laplace smoothing

86/158

Learning input distributions
General case: still simple

Bernoulli, Gaussian, Dirichlet, Poisson, Gamma are exponential families of the form:

pL(x) = h(x) exp(T (x)Tθ − A(θ))

87/158

Learning input distributions
General case: still simple

Bernoulli, Gaussian, Dirichlet, Poisson, Gamma are exponential families of the form:

pL(x) = h(x) exp(T (x)Tθ − A(θ))

Where:

A(θ) : log-normalizer

h(x) base-measure

T (x) sufficient statistics

θ natural parameters

87/158

Learning input distributions
General case: still simple

Bernoulli, Gaussian, Dirichlet, Poisson, Gamma are exponential families of the form:

pL(x) = h(x) exp(T (x)Tθ − A(θ))

Where:

A(θ) : log-normalizer

h(x) base-measure

T (x) sufficient statistics

θ natural parameters

orϕ expectation parameters — 1:1 mapping with θ⇒θ = θ(ϕ)
87/158

Learning input distributions
General case: still simple

Bernoulli, Gaussian, Dirichlet, Poisson, Gamma are exponential families of the form:

pL(x) = h(x) exp(T (x)Tθ − A(θ))

Maximum likelihood estimation is still “counting”:

ϕ̂ML = ED[T (x)] =
1

|D|
∑
x∈D

T (x)

θ̂ML = θ(ϕ̂ML)

87/158

The simplest “real” PC: a sum node

−10 −5 0 5 10

X1

0.00

0.05

0.10

0.15

0.20

0.25

p(
X

1)

X1 X1

w1 w2

Recall that sum nodes representmixture models:

pS(x) =
K∑
k=1

wkpLk(x)

88/158

The simplest “real” PC: a sum node

−10 −5 0 5 10

X1

0.00

0.05

0.10

0.15

0.20

0.25

p(
X

1)

X1 X1

w1 w2

Recall that sum nodes represent latent variable models:

pS(x) =
K∑
k=1

p(Z = k)p(x | Z = k)

88/158

Expectation-Maximization (EM)
Learning latent variable models: the EM recipe

Expectation-maximization=maximum-likelihood under missing data.

Given: p(X,Z) whereX observed, Zmissing at random.

θnew ← argmaxθ Ep(Z |X;θold) [log p(X,Z;θ)]

89/158

Expectation-Maximization for mixtures

θnew ← argmaxθ Ep(Z |X;θold) [log p(X, Z;θ)]

ML if Z was observed:

ŵk =

∑
z∈D 1[z = k]

|D|
ϕ̂k =

∑
x,z∈D 1[z = k]T (x)∑

z∈D 1[z = k]

Z is unobserved—but we have p(Z = k |x) ∝ wk Lk(x).

wnew
k =

∑
x∈D p(Z = k |x)

|D|
ϕnew

k =

∑
x,z∈D p(Z = k |x)T (x)∑

z∈D p(Z = k |x)

90/158

Expectation-Maximization for PCs

EM for mixtures well understood.

Mixtures are PCs with 1 sum node.

The general case, PCs with many sum nodes, is similar …

…but a bit more complicated.

91/158

Expectation-Maximization for PCs

EM for mixtures well understood.

Mixtures are PCs with 1 sum node.

The general case, PCs with many sum nodes, is similar …

…but a bit more complicated.

91/158

Augmentation
Making Latent Variables Explicit [Peharz et al. 2016]

92/158

This is an example of smoothing.But what did we mean with this ctx?One can show that the latent variables “above”……select either a path to S, or …

ctx = 1

…to its “twin” — but not both.

ctx = 0

Augmentation
Making Latent Variables Explicit [Peharz et al. 2016]

92/158

This is an example of smoothing.But what did we mean with this ctx?One can show that the latent variables “above”……select either a path to S, or …

ctx = 1

…to its “twin” — but not both.

ctx = 0

Augmentation
Making Latent Variables Explicit [Peharz et al. 2016]

92/158

This is an example of smoothing.But what did we mean with this ctx?One can show that the latent variables “above”……select either a path to S, or …

ctx = 1

…to its “twin” — but not both.

ctx = 0

Augmentation
Making Latent Variables Explicit [Peharz et al. 2016]

92/158

Setting all indicators to 1⇒ same computation.

This is an example of smoothing.But what did we mean with this ctx?One can show that the latent variables “above”……select either a path to S, or …

ctx = 1

…to its “twin” — but not both.

ctx = 0

Augmentation
Making Latent Variables Explicit [Peharz et al. 2016]

92/158

Setting single indicators to 1⇒ switches on corresponding child.

This is an example of smoothing.But what did we mean with this ctx?One can show that the latent variables “above”……select either a path to S, or …

ctx = 1

…to its “twin” — but not both.

ctx = 0

Augmentation
Making Latent Variables Explicit [Peharz et al. 2016]

92/158

Setting single indicators to 1⇒ switches on corresponding child.

This is an example of smoothing.But what did we mean with this ctx?One can show that the latent variables “above”……select either a path to S, or …

ctx = 1

…to its “twin” — but not both.

ctx = 0

Augmentation
Making Latent Variables Explicit [Peharz et al. 2016]

92/158

Setting single indicators to 1⇒ switches on corresponding child.

This is an example of smoothing.But what did we mean with this ctx?One can show that the latent variables “above”……select either a path to S, or …

ctx = 1

…to its “twin” — but not both.

ctx = 0

Augmentation
Making Latent Variables Explicit [Peharz et al. 2016]

92/158

Setting all indicators to 1⇒ same computation.
Have we included ZS in the model?

This is an example of smoothing.But what did we mean with this ctx?One can show that the latent variables “above”……select either a path to S, or …

ctx = 1

…to its “twin” — but not both.

ctx = 0

Augmentation
Making Latent Variables Explicit [Peharz et al. 2016]

92/158

Setting all indicators to 1⇒ same computation.
Have we included ZS in the model?
Yes, but we might have destroyed smoothness…

This is an example of smoothing.But what did we mean with this ctx?One can show that the latent variables “above”……select either a path to S, or …

ctx = 1

…to its “twin” — but not both.

ctx = 0

Augmentation
Making Latent Variables Explicit [Peharz et al. 2016]

92/158

Setting all indicators to 1⇒ same computation.
Have we included ZS in the model?
Yes, but we might have destroyed smoothness…

This is an example of smoothing.But what did we mean with this ctx?One can show that the latent variables “above”……select either a path to S, or …

ctx = 1

…to its “twin” — but not both.

ctx = 0

Augmentation
Making Latent Variables Explicit [Peharz et al. 2016]

92/158

We can fix this though…

This is an example of smoothing.But what did we mean with this ctx?One can show that the latent variables “above”……select either a path to S, or …

ctx = 1

…to its “twin” — but not both.

ctx = 0

Augmentation
Making Latent Variables Explicit [Peharz et al. 2016]

92/158

We can fix this though…

This is an example of smoothing.But what did we mean with this ctx?One can show that the latent variables “above”……select either a path to S, or …

ctx = 1

…to its “twin” — but not both.

ctx = 0

Augmentation
Making Latent Variables Explicit [Peharz et al. 2016]

92/158

We can fix this though…

This is an example of smoothing.But what did we mean with this ctx?One can show that the latent variables “above”……select either a path to S, or …

ctx = 1

…to its “twin” — but not both.

ctx = 0

Augmentation
Making Latent Variables Explicit [Peharz et al. 2016]

92/158

This is an example of smoothing.

But what did we mean with this ctx?One can show that the latent variables “above”……select either a path to S, or …

ctx = 1

…to its “twin” — but not both.

ctx = 0

Augmentation
Making Latent Variables Explicit [Peharz et al. 2016]

92/158

This is an example of smoothing.

But what did we mean with this ctx?

One can show that the latent variables “above”……select either a path to S, or …

ctx = 1

…to its “twin” — but not both.

ctx = 0

Augmentation
Making Latent Variables Explicit [Peharz et al. 2016]

92/158

This is an example of smoothing.

But what did we mean with this ctx?

One can show that the latent variables “above”……select either a path to S, or …

ctx = 1

…to its “twin” — but not both.

ctx = 0

Augmentation
Making Latent Variables Explicit [Peharz et al. 2016]

92/158

This is an example of smoothing.But what did we mean with this ctx?

One can show that the latent variables “above”…

…select either a path to S, or …

ctx = 1

…to its “twin” — but not both.

ctx = 0

Augmentation
Making Latent Variables Explicit [Peharz et al. 2016]

92/158

This is an example of smoothing.But what did we mean with this ctx?One can show that the latent variables “above”…

…select either a path to S, or …

ctx = 1

…to its “twin” — but not both.

ctx = 0

Augmentation
Making Latent Variables Explicit [Peharz et al. 2016]

92/158

This is an example of smoothing.But what did we mean with this ctx?One can show that the latent variables “above”……select either a path to S, or …

ctx = 1

…to its “twin” — but not both.

ctx = 0

Augmentation
Making Latent Variables Explicit [Peharz et al. 2016]

92/158

This is an example of smoothing.But what did we mean with this ctx?One can show that the latent variables “above”……select either a path to S, or …

ctx = 1

…to its “twin” — but not both.

ctx = 0

Thus, sum weights have sound probabilistic semantics.

Augmentation
Making Latent Variables Explicit [Peharz et al. 2016]

92/158

This is an example of smoothing.But what did we mean with this ctx?One can show that the latent variables “above”……select either a path to S, or …

ctx = 1

…to its “twin” — but not both.

ctx = 0

Thus, sum weights have sound probabilistic semantics.

Augmentation
Making Latent Variables Explicit [Peharz et al. 2016]

92/158

This is an example of smoothing.But what did we mean with this ctx?One can show that the latent variables “above”……select either a path to S, or …

ctx = 1

…to its “twin” — but not both.

ctx = 0

Thus, sum weights have sound probabilistic semantics.

Augmentation
Making Latent Variables Explicit [Peharz et al. 2016]

92/158

This is an example of smoothing.But what did we mean with this ctx?One can show that the latent variables “above”……select either a path to S, or …

ctx = 1

…to its “twin” — but not both.

ctx = 0

Note, that when ctx = 0, ZS becomes independent ofX !

Thus, w̄1, w̄2, w̄3 can be set arbitrary.
Do we need to store them then? No!

Augmentation
Making Latent Variables Explicit [Peharz et al. 2016]

92/158

This is an example of smoothing.But what did we mean with this ctx?One can show that the latent variables “above”……select either a path to S, or …

ctx = 1

…to its “twin” — but not both.

ctx = 0

Note, that when ctx = 0, ZS becomes independent ofX !
Thus, w̄1, w̄2, w̄3 can be set arbitrary.

Do we need to store them then? No!

Augmentation
Making Latent Variables Explicit [Peharz et al. 2016]

92/158

This is an example of smoothing.But what did we mean with this ctx?One can show that the latent variables “above”……select either a path to S, or …

ctx = 1

…to its “twin” — but not both.

ctx = 0

Note, that when ctx = 0, ZS becomes independent ofX !
Thus, w̄1, w̄2, w̄3 can be set arbitrary.
Do we need to store them then?

No!

Augmentation
Making Latent Variables Explicit [Peharz et al. 2016]

92/158

This is an example of smoothing.But what did we mean with this ctx?One can show that the latent variables “above”……select either a path to S, or …

ctx = 1

…to its “twin” — but not both.

ctx = 0

Note, that when ctx = 0, ZS becomes independent ofX !
Thus, w̄1, w̄2, w̄3 can be set arbitrary.
Do we need to store them then? No!

Augmentation
Making Latent Variables Explicit [Peharz et al. 2016]

92/158

This is an example of smoothing.But what did we mean with this ctx?One can show that the latent variables “above”……select either a path to S, or …

ctx = 1

…to its “twin” — but not both.

ctx = 0

This additional structure is a theoretical tool…

…and doesn’t need be generated in memory.

Augmentation
Making Latent Variables Explicit [Peharz et al. 2016]

92/158

This is an example of smoothing.But what did we mean with this ctx?One can show that the latent variables “above”……select either a path to S, or …

ctx = 1

…to its “twin” — but not both.

ctx = 0

This additional structure is a theoretical tool…
…and doesn’t need be generated in memory.

Expectation-Maximization
Tractable MAR (smooth, decomposable)

93/158

For learning, we need to know
for each sum S:

1. Is S reached (ctx =?)

2. Which child does it select (ZS =?)

Expectation-Maximization
Tractable MAR (smooth, decomposable)

93/158

For learning, we need to know
for each sum S:

1. Is S reached (ctx =?)

2. Which child does it select (ZS =?)

Expectation-Maximization
Tractable MAR (smooth, decomposable)

93/158

For learning, we need to know
for each sum S:

1. Is S reached (ctx =?)

2. Which child does it select (ZS =?)

We can infer it: p(ctx, ZS |x)

Expectation-Maximization
Tractable MAR (smooth, decomposable)

wnew
i,j ←

∑
x∈D p[ctxi = 1, Zi = j |x;wold]∑

x∈D p[ctxi = 1 |x;wold]

We get all the required statistics with a single backprop pass:

p[ctxi = 1, Zi = j |x;wold] =
1

p(x)

∂p(x)

∂Si(x)
Nj(x)w

old
i,j

Darwiche, “A Differential Approach to Inference in Bayesian Networks”, 2003
Peharz et al., “On the Latent Variable Interpretation in Sum-Product Networks”, 2016 94/158

Expectation-Maximization
Tractable MAR (smooth, decomposable)

wnew
i,j ←

∑
x∈D p[ctxi = 1, Zi = j |x;wold]∑

x∈D p[ctxi = 1 |x;wold]

We get all the required statistics with a single backprop pass:

p[ctxi = 1, Zi = j |x;wold] =
1

p(x)

∂p(x)

∂Si(x)
Nj(x)w

old
i,j

Darwiche, “A Differential Approach to Inference in Bayesian Networks”, 2003
Peharz et al., “On the Latent Variable Interpretation in Sum-Product Networks”, 2016 94/158

Expectation-Maximization
Tractable MAR (smooth, decomposable)

wnew
i,j ←

∑
x∈D p[ctxi = 1, Zi = j |x;wold]∑

x∈D p[ctxi = 1 |x;wold]

We get all the required statistics with a single backprop pass:

p[ctxi = 1, Zi = j |x;wold] =
1

p(x)

∂p(x)

∂Si(x)
Nj(x)w

old
i,j

⇒ This also works with missing values in x!

Darwiche, “A Differential Approach to Inference in Bayesian Networks”, 2003
Peharz et al., “On the Latent Variable Interpretation in Sum-Product Networks”, 2016 94/158

Expectation-Maximization
Tractable MAR (smooth, decomposable)

wnew
i,j ←

∑
x∈D p[ctxi = 1, Zi = j |x;wold]∑

x∈D p[ctxi = 1 |x;wold]

We get all the required statistics with a single backprop pass:

p[ctxi = 1, Zi = j |x;wold] =
1

p(x)

∂p(x)

∂Si(x)
Nj(x)w

old
i,j

⇒ Similar updates for leaves, when in exponential family.

Darwiche, “A Differential Approach to Inference in Bayesian Networks”, 2003
Peharz et al., “On the Latent Variable Interpretation in Sum-Product Networks”, 2016 94/158

Expectation-Maximization
Tractable MAR (smooth, decomposable)

wnew
i,j ←

∑
x∈D p[ctxi = 1, Zi = j |x;wold]∑

x∈D p[ctxi = 1 |x;wold]

We get all the required statistics with a single backprop pass:

p[ctxi = 1, Zi = j |x;wold] =
1

p(x)

∂p(x)

∂Si(x)
Nj(x)w

old
i,j

⇒ also derivable from a concave-convex procedure (CCCP) [Zhao et al. 2016a]

Darwiche, “A Differential Approach to Inference in Bayesian Networks”, 2003
Peharz et al., “On the Latent Variable Interpretation in Sum-Product Networks”, 2016 94/158

Expectation-Maximization
Tractable MAR/MAP (smooth, decomposable, deterministic)

95/158

Expectation-Maximization Exact ML
Tractable MAR/MAP (smooth, decomposable, deterministic)

95/158

Exact ML
Tractable MAR/MAP (smooth, decomposable, deterministic)

96/158

Deterministic circuit⇒ at most one non-zero sum child (for complete input).

Exact ML
Tractable MAR/MAP (smooth, decomposable, deterministic)

96/158

Deterministic circuit⇒ at most one non-zero sum child (for complete input).

Exact ML
Tractable MAR/MAP (smooth, decomposable, deterministic)

96/158

E.g., the second child of this sum node…

Exact ML
Tractable MAR/MAP (smooth, decomposable, deterministic)

96/158

…but that rules out ZS ∈ {1, 3}! ⇒ ZS = 2

Thus, the latent variables are actually observed in deterministic circuits!
They are (deterministic) functions of the observed data.

Exact ML
Tractable MAR/MAP (smooth, decomposable, deterministic)

96/158

…but that rules out ZS ∈ {1, 3}! ⇒ ZS = 2
Thus, the latent variables are actually observed in deterministic circuits!

They are (deterministic) functions of the observed data.

Exact ML
Tractable MAR/MAP (smooth, decomposable, deterministic)

96/158

…but that rules out ZS ∈ {1, 3}! ⇒ ZS = 2
Thus, the latent variables are actually observed in deterministic circuits!
They are (deterministic) functions of the observed data.

Example
Tractable MAR/MAP (smooth, decomposable, deterministic)

97/158

For each sum node, we know

1. if it is reached (ctx = 1)

2. which child it selects

Example
Tractable MAR/MAP (smooth, decomposable, deterministic)

97/158

For each sum node, we know

1. if it is reached (ctx = 1)

2. which child it selects

Example
Tractable MAR/MAP (smooth, decomposable, deterministic)

97/158

For each sum node, we know

1. if it is reached (ctx = 1)

2. which child it selects

Example
Tractable MAR/MAP (smooth, decomposable, deterministic)

97/158

For each sum node, we know

1. if it is reached (ctx = 1)

2. which child it selects

⇒ MLE by counting!

Exact ML
Tractable MAR/MAP (smooth, decomposable, deterministic)

Given a complete datasetD, the maximum-likelihood sum-weights are:

wML
i,j =

∑
x∈D 1{x |= [i ∧ j]}∑

x∈D 1{x |= [i]}

⇒ global maximum with single pass overD
⇒ regularization, e.g. Laplace-smoothing, to avoid division by zero

⇒ when missing data, fallback to EM

Kisa et al., “Probabilistic sentential decision diagrams”, 2014
Peharz et al., “Learning Selective Sum-Product Networks”, 2014 98/158

← ctxi = 1, Zi = j

← ctxi = 1

Exact ML
Tractable MAR/MAP (smooth, decomposable, deterministic)

Given a complete datasetD, the maximum-likelihood sum-weights are:

wML
i,j =

∑
x∈D 1{x |= [i ∧ j]}∑

x∈D 1{x |= [i]}

⇒ global maximum with single pass overD
⇒ regularization, e.g. Laplace-smoothing, to avoid division by zero

⇒ when missing data, fallback to EM

Kisa et al., “Probabilistic sentential decision diagrams”, 2014
Peharz et al., “Learning Selective Sum-Product Networks”, 2014 98/158

← ctxi = 1, Zi = j

← ctxi = 1

Exact ML
Tractable MAR/MAP (smooth, decomposable, deterministic)

Given a complete datasetD, the maximum-likelihood sum-weights are:

wML
i,j =

∑
x∈D 1{x |= [i ∧ j]}∑

x∈D 1{x |= [i]}

⇒ global maximum with single pass overD
⇒ regularization, e.g. Laplace-smoothing, to avoid division by zero

⇒ when missing data, fallback to EM

Kisa et al., “Probabilistic sentential decision diagrams”, 2014
Peharz et al., “Learning Selective Sum-Product Networks”, 2014 98/158

← ctxi = 1, Zi = j

← ctxi = 1

Exact ML
Tractable MAR/MAP (smooth, decomposable, deterministic)

Given a complete datasetD, the maximum-likelihood sum-weights are:

wML
i,j =

∑
x∈D 1{x |= [i ∧ j]}∑

x∈D 1{x |= [i]}

⇒ global maximum with single pass overD
⇒ regularization, e.g. Laplace-smoothing, to avoid division by zero

⇒ when missing data, fallback to EM

Kisa et al., “Probabilistic sentential decision diagrams”, 2014
Peharz et al., “Learning Selective Sum-Product Networks”, 2014 98/158

← ctxi = 1, Zi = j

← ctxi = 1

Bayesian parameter learning

Formulate a prior p(w,θ) over sum-weights and leaf-parameters and perform posterior
inference:

p(w,θ|D) ∝ p(w,θ) p(D|w,θ)

Moment matching (oBMM) [Jaini et al. 2016; Rashwan et al. 2016]

Collapsed variational inference algorithm [Zhao et al. 2016b]

Gibbs sampling [Trapp et al. 2019; Vergari et al. 2019]

99/158

Learning probabilistic circuits
Parameters Structure

G
en

er
at
iv
e deterministic

closed-form MLE [Kisa et al. 2014a; Peharz et al. 2014]
non-deterministic
EM [Poon et al. 2011; Peharz 2015; Zhao et al. 2016a]
SGD [Sharir et al. 2016; Peharz et al. 2019a]
Bayesian [Jaini et al. 2016; Rashwan et al. 2016]
[Zhao et al. 2016b; Trapp et al. 2019; Vergari et al. 2019]

?

Di
sc
ri
m
in
at
iv
e

? ?

100/158

Image-tailored (handcrafted) structures
“Recursive Image Slicing”

Poon et al., “Sum-Product Networks: a New Deep Architecture”, 2011 101/158

Image-tailored (handcrafted) structures
“Recursive Image Slicing”

Poon et al., “Sum-Product Networks: a New Deep Architecture”, 2011 101/158

Image-tailored (handcrafted) structures
“Recursive Image Slicing”

Poon et al., “Sum-Product Networks: a New Deep Architecture”, 2011 101/158

Image-tailored (handcrafted) structures
“Recursive Image Slicing”

Poon et al., “Sum-Product Networks: a New Deep Architecture”, 2011 101/158

Image-tailored (handcrafted) structures
“Recursive Image Slicing”

Poon et al., “Sum-Product Networks: a New Deep Architecture”, 2011 101/158

Image-tailored (handcrafted) structures
“Recursive Image Slicing”

Poon et al., “Sum-Product Networks: a New Deep Architecture”, 2011 101/158

Image-tailored (handcrafted) structures
“Recursive Image Slicing”

Poon et al., “Sum-Product Networks: a New Deep Architecture”, 2011 101/158

Image-tailored (handcrafted) structures
“Recursive Image Slicing”

Poon et al., “Sum-Product Networks: a New Deep Architecture”, 2011 101/158

Image-tailored (handcrafted) structures
“Recursive Image Slicing”

Poon et al., “Sum-Product Networks: a New Deep Architecture”, 2011 101/158

Image-tailored (handcrafted) structures
“Recursive Image Slicing”

Poon et al., “Sum-Product Networks: a New Deep Architecture”, 2011 101/158

Image-tailored (handcrafted) structures
“Recursive Image Slicing”

Poon et al., “Sum-Product Networks: a New Deep Architecture”, 2011 101/158

Image-tailored (handcrafted) structures
“Recursive Image Slicing”

Poon et al., “Sum-Product Networks: a New Deep Architecture”, 2011 101/158

⇒ Smooth & Decomposable

Image-tailored (handcrafted) structures
“Recursive Image Slicing”

Poon et al., “Sum-Product Networks: a New Deep Architecture”, 2011 101/158

⇒ Smooth & Decomposable
⇒ Tractable MAR

Learning the structure from data
“Recursive Data Slicing” — LearnSPN

Gens et al., “Learning the Structure of Sum-Product Networks”, 2013
102/158

Cluster

Learning the structure from data
“Recursive Data Slicing” — LearnSPN

Gens et al., “Learning the Structure of Sum-Product Networks”, 2013
102/158

Cluster→ sum node

Learning the structure from data
“Recursive Data Slicing” — LearnSPN

Gens et al., “Learning the Structure of Sum-Product Networks”, 2013
102/158

Try to find independent groups
of random variables

Learning the structure from data
“Recursive Data Slicing” — LearnSPN

Gens et al., “Learning the Structure of Sum-Product Networks”, 2013
102/158

Try to find independent groups
of random variables
Success→ product node

Learning the structure from data
“Recursive Data Slicing” — LearnSPN

Gens et al., “Learning the Structure of Sum-Product Networks”, 2013
102/158

Try to find independent groups
of random variables

Learning the structure from data
“Recursive Data Slicing” — LearnSPN

Gens et al., “Learning the Structure of Sum-Product Networks”, 2013
102/158

Try to find independent groups
of random variables
Success→ product node

Learning the structure from data
“Recursive Data Slicing” — LearnSPN

Gens et al., “Learning the Structure of Sum-Product Networks”, 2013
102/158

Single variable

Learning the structure from data
“Recursive Data Slicing” — LearnSPN

Gens et al., “Learning the Structure of Sum-Product Networks”, 2013
102/158

Single variable→ leaf

Learning the structure from data
“Recursive Data Slicing” — LearnSPN

Gens et al., “Learning the Structure of Sum-Product Networks”, 2013
102/158

Try to find independent groups
of random variables

Learning the structure from data
“Recursive Data Slicing” — LearnSPN

Gens et al., “Learning the Structure of Sum-Product Networks”, 2013
102/158

Try to find independent groups
of random variables
Fail→ cluster→ sum node

Learning the structure from data
“Recursive Data Slicing” — LearnSPN

Gens et al., “Learning the Structure of Sum-Product Networks”, 2013
102/158

⇒ Continue until no further
leaf can be expanded.
⇒ Clustering ratios also deliver
(initial) parameters.

Learning the structure from data
“Recursive Data Slicing” — LearnSPN

Gens et al., “Learning the Structure of Sum-Product Networks”, 2013
102/158

⇒ Continue until no further
leaf can be expanded.
⇒ Clustering ratios also deliver
(initial) parameters.
⇒ Smooth & Decomposable
⇒ Tractable MAR

LearnSPN
Variants

ID-SPN [Rooshenas et al. 2014]

LearnSPN-b/T/B [Vergari et al. 2015]

for heterogeneous data [Molina et al. 2018]

using k-means [Butz et al. 2018] or SVD splits [Adel et al. 2015]

learning DAGs [Dennis et al. 2015; Jaini et al. 2018]

approximating independence tests [Di Mauro et al. 2018]

103/158

Structure Learning + MAP (determinism)
“Recursive conditioning” — Cutset Networks [Rahman et al. 2014]

104/158

Structure Learning + MAP (determinism)
“Recursive conditioning” — Cutset Networks [Rahman et al. 2014]

104/158

Structure Learning + MAP (determinism)
“Recursive conditioning” — Cutset Networks [Rahman et al. 2014]

104/158

Structure Learning + MAP (determinism)
“Recursive conditioning” — Cutset Networks [Rahman et al. 2014]

104/158

Structure Learning + MAP (determinism)
“Recursive conditioning” — Cutset Networks [Rahman et al. 2014]

104/158

Structure Learning + MAP (determinism)
“Recursive conditioning” — Cutset Networks [Rahman et al. 2014]

104/158

Structure Learning + MAP (determinism)
“Recursive conditioning” — Cutset Networks [Rahman et al. 2014]

104/158

Structure Learning + MAP (determinism)
“Recursive conditioning” — Cutset Networks [Rahman et al. 2014]

104/158

Structure Learning + MAP (determinism)
“Recursive conditioning” — Cutset Networks [Rahman et al. 2014]

104/158

Structure Learning + MAP (determinism)
“Recursive conditioning” — Cutset Networks [Rahman et al. 2014]

104/158

Structure Learning + MAP (determinism)
“Recursive conditioning” — Cutset Networks [Rahman et al. 2014]

104/158

Structure Learning + MAP (determinism)
“Recursive conditioning” — Cutset Networks [Rahman et al. 2014]

104/158

Structure Learning + MAP (determinism)
“Recursive conditioning” — Cutset Networks [Rahman et al. 2014]

104/158

Structure Learning + MAP (determinism)
“Recursive conditioning” — Cutset Networks [Rahman et al. 2014]

104/158

Structure Learning + MAP (determinism)
“Recursive conditioning” — Cutset Networks [Rahman et al. 2014]

104/158

…and so on.

Structure Learning + MAP (determinism)
“Recursive conditioning” — Cutset Networks [Rahman et al. 2014]

104/158

Convert into PC…

Structure Learning + MAP (determinism)
“Recursive conditioning” — Cutset Networks [Rahman et al. 2014]

104/158

Convert into PC…

Structure Learning + MAP (determinism)
“Recursive conditioning” — Cutset Networks [Rahman et al. 2014]

104/158

Convert into PC…

Structure Learning + MAP (determinism)
“Recursive conditioning” — Cutset Networks [Rahman et al. 2014]

104/158

Convert into PC…

Structure Learning + MAP (determinism)
“Recursive conditioning” — Cutset Networks [Rahman et al. 2014]

104/158

Convert into PC…

Structure Learning + MAP (determinism)
“Recursive conditioning” — Cutset Networks [Rahman et al. 2014]

104/158

Convert into PC… Resulting PC
is deterministic.

Cutset networks (CNets)
Variants

Variable selection based on entropy [Rahman et al. 2014]

Can be extended to mixtures of CNets using EM [ibid.]

Structure search over OR-graphs/CL-trees [Di Mauro et al. 2015a]

Boosted CNets [Rahman et al. 2016]

Randomized CNets, Bagging [Di Mauro et al. 2017]

105/158

Structure learning + MAP (determinism)
Greedy structure search [Peharz2014; Lowd et al. 2008; Liang et al. 2017a]

Structure learning as discrete optimization

Typical objective:

O = logL+ λ|C|,

where logL is log-likelihood using ML-parameters, and |C| the PC’s size (⇔ worst
case inference cost).

Iterate:
1. Start with a simple initial structure.
2. Perform local structure modifications, greedily improvingO

106/158

Randomized structure learning

Extremely Randomized CNets (XCNets) [Di Mauro et al. 2017]

Top-down random conditioning.

Learning Chow-Liu trees at the leaves.

Smooth, decomposable, deterministic.

Random Tensorized SPNs (RAT-SPNs) [Peharz et al. 2019a]

Random tree-shaped PCs.

Discriminative+generative parameter learning (SGD/EM + dropout).

Smooth, decomposable.

107/158

Ensembles of probabilistic circuits

Single circuits might be not accurate enough or overfit training data…
Solution: ensembles of circuits!

⇒ non-deterministic mixture models: another sum node!

p(X) =
K∑
i=1

λiCi(X), λi ≥ 0
K∑
i=1

λi = 1

Ensemble weights and components can be learned separately or jointly

EM or structural EM

bagging

boosting
108/158

Bagging

more efficient than EM

mixture coefficients are set equally probable

mixture components can be learned independently on different bootstraps

Adding random subspace projection to bagged networks (like for CNets)

more efficient than bagging

Di Mauro et al., “Learning Accurate Cutset Networks by Exploiting Decomposability”, 2015
Di Mauro et al., “Learning Bayesian Random Cutset Forests”, 2015 109/158

Boosting

Boosting Probabilistic Circuits

BDE: boosting density estimation
sequentially grows the ensemble, adding a weak base learner at each stage
at each boosting stepm, find a weak learner cm and a coefficient ηm maximizing the
weighted LL of the new model

fm = (1− ηm)fm−1 + ηmcm

GBDE: a kernel based generalization of BDE—AdaBoost style algorithm

sequential EM
at each stepm, jointly optimize ηm and cm keeping fm−1 fixed

Rahman et al., “Learning Ensembles of Cutset Networks”, 2016 110/158

Learning probabilistic circuits
Parameters Structure

G
en

er
at
iv
e deterministic

closed-form MLE [Kisa et al. 2014a; Peharz et al. 2014]
non-deterministic
EM [Poon et al. 2011; Peharz 2015; Zhao et al. 2016a]
SGD [Sharir et al. 2016; Peharz et al. 2019a]
Bayesian [Jaini et al. 2016; Rashwan et al. 2016]
[Zhao et al. 2016b; Trapp et al. 2019; Vergari et al. 2019]

greedy
top-down [Gens et al. 2013; Rooshenas et al. 2014]
[Rahman et al. 2014; Vergari et al. 2015]
bottom-up [Peharz et al. 2013]
hill climbing [Lowd et al. 2008, 2013; Peharz et al. 2014]
[Dennis et al. 2015; Liang et al. 2017a]
random RAT-SPNs [Peharz et al. 2019a] XCNet [Di Mauro et al. 2017]

Di
sc
ri
m
in
at
iv
e

? ?

111/158

EVI inference : density estimation

dataset single models ensembles dataset single models ensembles

nltcs -5.99 [ID-SPN] -5.99 [LearnPSDDs] dna -79.88 [SPGM] -80.07 [SPN-btb]

msnbc -6.04 [Prometheus] -6.04 [LearnPSDDs] kosarek -10.59 [Prometheus] -10.52 [LearnPSDDs]

kdd -2.12 [Prometheus] -2.12 [LearnPSDDs] msweb -9.73 [ID-SPN] -9.62 [XCNets]

plants -12.54 [ID-SPN] -11.84 [XCNets] book -34.14 [ID-SPN] -33.82 [SPN-btb]

audio -39.77 [BNP-SPN] -39.39 [XCNets] movie -51.49 [Prometheus] -50.34 [XCNets]

jester -52.42 [BNP-SPN] -51.29 [LearnPSDDs] webkb -151.84 [ID-SPN] -149.20 [XCNets]

netflix -56.36 [ID-SPN] -55.71 [LearnPSDDs] cr52 -83.35 [ID-SPN] -81.87 [XCNets]

accidents -26.89 [SPGM] -29.10 [XCNets] c20ng -151.47 [ID-SPN] -151.02 [XCNets]

retail -10.85 [ID-SPN] -10.72 [LearnPSDDs] bbc -248.5 [Prometheus] -229.21 [XCNets]

pumbs* -22.15 [SPGM] -22.67 [SPN-btb] ad -15.40 [CNetXD] -14.00 [XCNets]

112/158

Learning probabilistic circuits
Parameters Structure

G
en

er
at
iv
e deterministic

closed-form MLE [Kisa et al. 2014a; Peharz et al. 2014]
non-deterministic
EM [Poon et al. 2011; Peharz 2015; Zhao et al. 2016a]
SGD [Sharir et al. 2016; Peharz et al. 2019a]
Bayesian [Jaini et al. 2016; Rashwan et al. 2016]
[Zhao et al. 2016b; Trapp et al. 2019; Vergari et al. 2019]

greedy
top-down [Gens et al. 2013; Rooshenas et al. 2014]
[Rahman et al. 2014; Vergari et al. 2015]
bottom-up [Peharz et al. 2013]
hill climbing [Lowd et al. 2008, 2013; Peharz et al. 2014]
[Dennis et al. 2015; Liang et al. 2017a]
random RAT-SPNs [Peharz et al. 2019a] XCNet [Di Mauro et al. 2017]

Di
sc
ri
m
in
at
iv
e

deterministic
convex-opt MLE [Liang et al. 2019]
non-deterministic
EM [Rashwan et al. 2018]
SGD [Gens et al. 2012; Sharir et al. 2016]
[Peharz et al. 2019a]

greedy
top-down [Shao et al. 2019]
hill climbing [Rooshenas et al. 2016]

113/158

Representations and theory

Stay tuned for...

Next: 1. How are probabilistic circuits related to logical ones?
⇒ a historical perspective

2. How classical tractable models can be turned in a circuit?
⇒ Compiling low-treewidth PGMs

3. How do PCs in the literature relate and differ?
⇒ SPNs, ACs, CNets, PSDDs

After: More advanced query classes and structural properties!
115/158

Tractability to other semi-rings

Tractable probabilistic inference exploits efficient summation for decomposable
functions in the probability commutative semiring:

(R,+,×, 0, 1)
analogously efficient computations can be done in other semi-rings:

(S,⊕,⊗, 0⊕, 1⊗)
⇒ Algebraic model counting [Kimmig et al. 2017], Semi-ring

programming [Belle et al. 2016]
Historically, very well studied for boolean functions:

(B = {0, 1},∨,∧, 0, 1) ⇒ logical circuits!
116/158

Logical circuits

∧ ∧

∨

X̄4 X̄3

∨ ∨

∧ ∧∧ ∧

X3 X4

X1 X2 X̄1 X̄2

s/d-D/NNFs
[Darwiche et al. 2002a]

O/BDDs
[Bryant 1986]

SDDs
[Darwiche 2011]

Logical circuits are compact representations for boolean functions…
117/158

Logical circuits
structural properties

…and like probabilitistic circuits, one can define structural properties: (structured)
decomposability, smoothness, determinism allowing for tractable computations

Darwiche et al., “A knowledge compilation map”, 2002 118/158

Logical circuits
a knowledge compilation map

…inducing a hierarchy of tractable logical circuit families

Darwiche et al., “A knowledge compilation map”, 2002 119/158

Logical circuits
connection to probabilistic circuits through WMC

A task called weighted model counting (WMC)

WMC(∆, w) =
∑
x|=∆

∏
l∈x

w(l)

Probabilistic inference by WMC:
1. Encode probabilistic model as WMC formula∆
2. Compile∆ into a logical circuit (e.g. d-DNNF, OBDD, SDD, etc.)
3. Tractable MAR/CON by tractable WMC on circuit
4. Answer complex queries tractably by enforcing more structural properties

120/158

Logical circuits
connection to probabilistic circuits through WMC

Resulting compiled WMC circuit equivalent to probabilistic circuit
⇒ parameter variables→ edge parameters

λā λa

×× × ×

θa|c̄θā|c̄ θā|c θa|c θb̄|c̄ θb|c̄

λb̄ λb

×× × ×

θb̄|c θb|c

λc̄ λc

× ×

θc̄ θc

Compiled circuit of WMC encoding

A = ā A = a

θā|c̄ θa|c̄ θā|c θa|c

B = b̄ B = b

θb̄|c̄ θb|c̄ θb̄|c θb|cC = c̄ C = c

× ×

θc̄ θc

Equivalent probabilistic circuit
121/158

From BN trees to circuits
via compilation

D

C

A B

→

A = 0 A = 1 B = 0 B = 1

C = 0 C = 1

× ×

× ×

D = 0 D = 1

122/158

From BN trees to circuits
via compilation

D

C

A B

Bottom-up compilation: starting from leaves…

122/158

From BN trees to circuits
via compilation

D

C

A B

…compile a leaf CPT

A = 0 A = 1

.3 .7

p(A|C = 0)

122/158

From BN trees to circuits
via compilation

D

C

A B

…compile a leaf CPT

A = 0 A = 1

.6 .4

p(A|C = 1)

122/158

From BN trees to circuits
via compilation

D

C

A B

…compile a leaf CPT…for all leaves…

A = 0 A = 1 B = 0 B = 1

p(A|C) p(B|C)

122/158

From BN trees to circuits
via compilation

D

C

A B

…and recurse over parents…

A = 0 A = 1 B = 0 B = 1

C = 0 C = 1

× ×

.2
.8

p(C|D = 0)

122/158

From BN trees to circuits
via compilation

D

C

A B

…while reusing previously compiled nodes!…

A = 0 A = 1 B = 0 B = 1

C = 0 C = 1

× ×

.9

.1

p(C|D = 1)

122/158

From BN trees to circuits
via compilation

D

C

A B
A = 0 A = 1 B = 0 B = 1

C = 0 C = 1

× ×

× ×

D = 0 D = 1

.5 .5

p(D)

122/158

Compilation : probabilistic programming

Chavira et al., “Compiling relational Bayesian networks for exact inference”, 2006
Holtzen et al., “Symbolic Exact Inference for Discrete Probabilistic Programs”, 2019
De Raedt et al.; Riguzzi; Fierens et al.; Vlasselaer et al., “ProbLog: A Probabilistic Prolog and Its
Application in Link Discovery.”; “A top down interpreter for LPAD and CP-logic”; “Inference and
Learning in Probabilistic Logic Programs using Weighted Boolean Formulas”; “Anytime Inference in
Probabilistic Logic Programs with Tp-compilation”, 2007; 2007; 2015; 2015
Olteanu et al.; Van den Broeck et al., “Using OBDDs for efficient query evaluation on probabilistic
databases”; Query Processing on Probabilistic Data: A Survey, 2008; 2017
Vlasselaer et al., “Exploiting Local and Repeated Structure in Dynamic Bayesian Networks”, 2016 123/158

Low-treewidh PGMs

Tree, polytrees and
Thin Junction trees
can be turned into

decomposable

smooth

deterministic

circuits

Therefore they support
tractable

EVI

MAR/CON

MAP

D

C

A B

124/158

Arithmetic Circuits (ACs)

ACs [Darwiche 2003] are

decomposable

smooth

deterministic

They support tractable

EVI

MAR/CON

MAP

⇒ parameters are attached to the leaves
⇒ …but can be moved to the sum node edges [Rooshenas et al. 2014]

Lowd et al., “Learning Markov Networks With Arithmetic Circuits”, 2013 125/158

Sum-Product Networks (SPNs)

SPNs [Poon et al. 2011] are

decomposable

smooth

deterministic

They support tractable

EVI

MAR/CON

MAP

× ×

× ×× ×

X3 X4

X1 X2 X1 X2

0.3 0.7

0.5 0.5 0.9 0.1

⇒ deterministic SPNs are also called selective [Peharz et al. 2014]

126/158

Cutset Networks (CNets)

CNets
[Rahman et al. 2014] are

decomposable

smooth

deterministic

They support tractable

EVI

MAR/CON

MAP

X1

X2 X3

C1

C2 C3
0.4 0.6

X4X5

X6 X3

0.7

X5X6

X4 X2

0.8

X5X4

X6 X2

0.2

X3X6

X5 X4

0.3

Rahman et al., “Cutset Networks: A Simple, Tractable, and Scalable Approach for Improving the
Accuracy of Chow-Liu Trees”, 2014
Di Mauro et al., “Learning Accurate Cutset Networks by Exploiting Decomposability”, 2015 127/158

Probabilistic Sentential Decision Diagrams

PSDDs [Kisa et al. 2014b] are

structured
decomposable

smooth

deterministic

They support tractable

EVI

MAR/CON

MAP

Complex queries!

Kisa et al., “Probabilistic sentential decision diagrams”, 2014
Choi et al., “Tractable learning for structured probability spaces: A case study in learning
preference distributions”, 2015
Shen et al., “Conditional PSDDs: Modeling and learning with modular knowledge”, 2018 128/158

AndOrGraphs

AndOrGarphs
[Dechter et al. 2007] are

structured
decomposable

smooth

deterministic

They support tractable

EVI

MAR/CON

MAP

Complex queries!

Dechter et al., “AND/OR search spaces for graphical models”, 2007
Marinescu et al., “Best-first AND/OR search for 0/1 integer programming”, 2007 129/158

Smooth ∨ decomposable ∨ deterministic
∨ structured decomposable PCs?

smooth dec. det. str.dec.

Arithmetic Circuits (ACs) [Darwiche 2003] 4 4 4 8
Sum-Product Networks (SPNs) [Poon et al. 2011] 4 4 8 8

Cutset Networks (CNets) [Rahman et al. 2014] 4 4 4 8
PSDDs [Kisa et al. 2014b] 4 4 4 4

AndOrGraphs [Dechter et al. 2007] 4 4 4 4

130/158

Structured decomposability

A product node is structured decomposable if decomposes according to a node in a vtree
⇒ stronger requirement than decomposability

X3

X1 X2

vtree

×

X1 X2

×

X1 X2

X3

×

×

X1 X2

×

X1 X2

X3

×

structured decomposable circuit
131/158

Structured decomposability

A product node is structured decomposable if decomposes according to a node in a vtree
⇒ stronger requirement than decomposability

X3

X1 X2

vtree

×

X1 X3

×

X1 X3

X2

×

×

X1 X2

×

X1 X2

X3

×

non structured decomposable circuit
131/158

Probability of logical events

q8: What is the probability of having a traffic jam on
my route to work?

© fineartamerica.com

132/158

fineartamerica.com

Probability of logical events

q8: What is the probability of having a traffic jam on
my route to work?

q8(m) = pm(
∨

i∈route JamStr i)

⇒ marginals + logical events

© fineartamerica.com

132/158

fineartamerica.com

Smoothness + structured decomp. = tractable PR

Computing p(α): the probability of arbitrary
logical formula

Multilinear in circuit sizes if the logical circuit:

is smooth, structured decomposable,
deterministic

shares the same vtree

× ×

× ×

X3 X3

X1X2 X2 X1

X3

∧

∨

∨

∧ ∧

X1 > 0.6 ¬X2 X1 ≤ 0.3

133/158

Smoothness + structured decomp. = tractable PR

If p(x) =
∑

i wipi(x),α =
∨

j αj ,
(smooth p)
(smooth + deterministicα):

p(α) =
∑
i

wipi

∨
j

αj

 =
∑
i

wi

∑
j

pi (αj)

⇒ probabilities are “pushed down” to
children

× ×

× ×

X3 X3

X1X2 X2 X1

X3

∧

∨

∨

∧ ∧

X1 > 0.6 ¬X2 X1 ≤ 0.3

133/158

Smoothness + structured decomp. = tractable PR

If p(x,y) = p(x)p(y),α = β ∧ γ ,
(structured decomposability):

p(α) = p (β ∧ γ) · p (β ∧ γ) = p (β) · p (γ)

⇒ probabilities decompose into simpler
ones

× ×

× ×
X3 X3

X1X2 X2 X1

X3

∧

∨

∨

∧ ∧

X1 > 0.6 ¬X2 X1 ≤ 0.3

133/158

Smoothness + structured decomp. = tractable PR

To compute p(α):

compute the probability for each pair of
probabilistic and logical circuit nodes for
the same vtree node

⇒ cache the values!

feedforward evaluation (bottom-up)

× ×

× ×

X3 X3

X1X2 X2 X1

X3

∧

∨

∨

∧ ∧

X1 > 0.6 ¬X2 X1 ≤ 0.3

133/158

Smoothness + structured decomp. = tractable PR

To compute p(α):

compute the probability for each pair of
probabilistic and logical circuit nodes for
the same vtree node

⇒ cache the values!

feedforward evaluation (bottom-up)

× ×

× ×

X3 X3

X1X2 X2 X1

X3

∧

∨

∨

∧ ∧

X1 > 0.6 ¬X2 X1 ≤ 0.3

133/158

ADV inference : preference learning

Preferences and rankings as logical
constraints

Structured decomposable circuits for
inference over structured spaces

SOTA on modeling densities over rankings

Choi et al., “Tractable learning for structured probability spaces: A case study in learning
preference distributions”, 2015
Shen et al., “A Tractable Probabilistic Model for Subset Selection.”, 2017 134/158

structured decomposability = tractable…
Symmetric and group queries (exactly-k, odd-number, etc.) [Bekker et al. 2015]

For the “right” vtree

Probability of logical circuit event in probabilistic circuit [Choi et al. 2015b]

Multiply two probabilistic circuits [Shen et al. 2016]

KL Divergence between probabilistic circuits [Liang et al. 2017b]

Same-decision probability [Oztok et al. 2016]

Expected same-decision probability [Choi et al. 2017]

Expected classifier agreement [Choi et al. 2018]

Expected predictions [Khosravi et al. 2019c]

135/158

ADV inference : expected predictions

Reasoning about the output of a classifier or regressor f given
a distribution p over the input features

⇒ missing values at test time
⇒ exploratory classifier analysis

E
xm∼pθ(xm|xo)

[
fk
ϕ (x

m,xo)
]

Closed form moments for f and p as structured decomposable
circuits with same v-tree

Khosravi et al., “On Tractable Computation of Expected Predictions”, 2019 136/158

Stay tuned for...

Next: 1. How precise is the characterization of tractable circuits by
structural properties? ⇒ necessary conditions

2. How do structural constraints affect the circuit sizes?
⇒ succinctness analysis

After: Conclusions!

137/158

Smoothness + decomposability = tractable MAR

Recall: Smoothness and decomposability are sufficient conditions for partial
evidence evaluation of a circuit to compute marginals.

× ×

× ×× ×

X1

X2

X1

X2

X3 X4 X3 X4

× ×

× ×× ×

1.0

X1

.61

X2

1.0

X1

.83

X2

1.0

X3

.58

X4

1.0

X3

.77

X4

.35 .64

.49

.58 .77

.58 .77.58 .77

1.0

X1

.61

X2

1.0

X1

.83

X2

1.0

X3

.58

X4

1.0

X3

.77

X4

138/158

Smoothness + decomposability = tractable MAR

Smoothness and decomposability are necessary and sufficient conditions for
partial evidence evaluation of a circuit to compute marginals.

Non-smooth node⇒ a variable is unaccounted for⇒missing integrals.

Non-decomposable node⇒ integral does not decompose.

139/158

Smoothness + decomposability = tractable MAR

Smoothness and decomposability are necessary and sufficient conditions for
partial evidence evaluation of a circuit to compute marginals.

Non-smooth node⇒ a variable is unaccounted for⇒missing integrals.

Non-decomposable node⇒ integral does not decompose.

139/158

Smoothness + decomposability = tractable MAR

Smoothness and decomposability are necessary and sufficient conditions for
partial evidence evaluation of a circuit to compute marginals.

Non-smooth node⇒ a variable is unaccounted for⇒missing integrals.

Non-decomposable node⇒ integral does not decompose.

139/158

Determinism + decomposability = tractable MAP

Recall: Determinism and decomposability are sufficient conditions for
maximizer circuit evaluation to compute MAP.

× ×

× ×× ×

X1

X2

X1

X2

X3 X4 X3 X4

× ×

max

max max

× ×× ×

.66

X1

.61

X2

.2

X1

.83

X2

1.2

X3

.58

X4

1.8

X3

.77

X4

.35 .64

.49

.58 .77

.58 .77.58 .77

.66

X1

.61

X2

.2

X1

.83

X2

1.2

X3

.58

X4

1.8

X3

.77

X4

140/158

Determinism + decomposability = tractable MAP

Recall: Determinism and decomposability are sufficient conditions for
maximizer circuit evaluation to compute MAP.

Decomposability is not necessary!
⇒ A weaker condition, consistency, suffices.

140/158

Consistency

A product node is consistent if any variable shared between its children appears in a
single leaf node

⇒ decomposability implies consistency

X1 X2 X3

×

w1 w2 w3 w4

consistent circuit

X1 X2 ≤ θ X2 > θ X3

×

w1 w2 w3 w4

inconsistent circuit 141/158

Determinism + consistency = tractable MAP

142/158

Determinism + consistency = tractable MAP

Ifmaxqshared p(q, e) =
maxqshared p(qx, ex) ·maxqshared p(qy, ey) (consistent):

max
q

p(q, e) = max
qx,qy

p(qx, ex,qy, ey)

= max
qx

p(qx, ex) ·max
qy

p(qy, ey)

⇒ solving optimization independently

× ×

× ×× ×

X1

X2

X1

X2

X3 X4 X3 X4

142/158

Determinism + consistency = tractable MAP

Determinism and consistency are necessary and sufficient conditions for
maximizer circuit evaluation to compute MAP.

Non-deterministic node⇒ cannot maximize correctly without
summations.

Inconsistent node⇒ MAP assignments of children conflict with each
other.

143/158

Determinism + consistency = tractable MAP

Determinism and consistency are necessary and sufficient conditions for
maximizer circuit evaluation to compute MAP.

Non-deterministic node⇒ cannot maximize correctly without
summations.

Inconsistent node⇒ MAP assignments of children conflict with each
other.

143/158

Determinism + consistency = tractable MAP

Determinism and consistency are necessary and sufficient conditions for
maximizer circuit evaluation to compute MAP.

Non-deterministic node⇒ cannot maximize correctly without
summations.

Inconsistent node⇒ MAP assignments of children conflict with each
other.

143/158

Expressive efficiency of circuits

Tractability is defined w.r.t. the size of the model.

How do structural constraints affect expressive efficiency (succinctness) of
probabilistic circuits?

⇒ Again, connections to logical circuits

144/158

Expressive efficiency of circuits

A family of probabilistic circuitsM1 is at least as succinct asM2

iff for everym2 ∈M2, there existsm1 ∈M1 that represents

the same distribution and |m1| ≤ |poly(m2)|.
⇒ denotedM1 ≤M2

⇒ strictly more succinct iffM1 ≤M2 andM1 ̸≥ M2

145/158

Expressive efficiency of circuits

smooth & Decomp.

MAR

det. & cons.

MAP

?

Are smooth&decomposable circuits as
succinct as deterministic & consistent ones,
or vice versa?

146/158

Expressive efficiency of circuits

smooth & Decomp.

MAR

det. & cons.

MAP

? det. & Decomp.

[Darwiche et al. 2002b]

: strictly more succinct

Smooth&decomposable circuits strictly
more succinct than
deterministic&decomposable ones

Smooth&consistent circuits are equally
succinct as smooth&decomposable ones

146/158

Expressive efficiency of circuits

smooth & Decomp.

MAR

det. & cons.

MAP

? det. & Decomp.

[Darwiche et al. 2002b]

: strictly more succinct

smooth & cons.

[Peharz et al. 2015]*

: equally succinct

Smooth&decomposable circuits strictly
more succinct than
deterministic&decomposable ones

Smooth&consistent circuits are equally
succinct as smooth&decomposable ones

146/158

Expressive efficiency of circuits

smooth & Decomp.

MAR

det. & cons.

MAP

? det. & Decomp.

[Darwiche et al. 2002b]

: strictly more succinct

smooth & cons.

[Peharz et al. 2015]*

: equally succinct

?
≤

Smooth&decomposable circuits strictly
more succinct than
deterministic&decomposable ones

Smooth&consistent circuits are equally
succinct as smooth&decomposable ones

146/158

Expressive efficiency of circuits

smooth & Decomp.

MAR

det. & cons.

MAP

? det. & Decomp.

[Darwiche et al. 2002b]

: strictly more succinct

smooth & cons.

[Peharz et al. 2015]*

: equally succinct

?
≤

Consider following circuit over Boolean variables:∏r
i (Yi · Zi1 + (¬Yi) · Zi2), Zij ∈ X

Size linear in the number of variables

Deterministic and consistent

Marginal (with no evidence) is the solution
to #P-hard SAT′ problem [Valiant 1979]⇒
no tractable circuit for marginals!

146/158

Expressive efficiency of circuits

smooth & Decomp.

MAR

det. & cons.

MAP

? det. & Decomp.

[Darwiche et al. 2002b]

: strictly more succinct

smooth & cons.

[Peharz et al. 2015]*

: equally succinct

?
≤

Consider following circuit over Boolean variables:∏r
i (Yi · Zi1 + (¬Yi) · Zi2), Zij ∈ X

Size linear in the number of variables

Deterministic and consistent

Marginal (with no evidence) is the solution
to #P-hard SAT′ problem [Valiant 1979]⇒
no tractable circuit for marginals!

146/158

Expressive efficiency of circuits

smooth & Decomp.

MAR

det. & cons.

MAP

? det. & Decomp.

[Darwiche et al. 2002b]

: strictly more succinct

smooth & cons.

[Peharz et al. 2015]*

: equally succinct

?
≤

Consider following circuit over Boolean variables:∏r
i (Yi · Zi1 + (¬Yi) · Zi2), Zij ∈ X

Size linear in the number of variables

Deterministic and consistent

Marginal (with no evidence) is the solution
to #P-hard SAT′ problem [Valiant 1979]⇒
no tractable circuit for marginals!

146/158

Expressive efficiency of circuits

smooth & Decomp.

MAR

det. & cons.

MAP

? det. & Decomp.

[Darwiche et al. 2002b]

: strictly more succinct

smooth & cons.

[Peharz et al. 2015]*

: equally succinct

?
≤

Consider following circuit over Boolean variables:∏r
i (Yi · Zi1 + (¬Yi) · Zi2), Zij ∈ X

Size linear in the number of variables

Deterministic and consistent

Marginal (with no evidence) is the solution
to #P-hard SAT′ problem [Valiant 1979]⇒
no tractable circuit for marginals!

146/158

Expressive efficiency of circuits

smooth & Decomp.

MAR

det. & cons.

MAP

det. & Decomp.

[Darwiche et al. 2002b]

: strictly more succinct

smooth & cons.

[Peharz et al. 2015]*

: equally succinct

̸≤

̸≤
≤,
̸≥

Consider following circuit over Boolean variables:∏r
i (Yi · Zi1 + (¬Yi) · Zi2), Zij ∈ X

Size linear in the number of variables

Deterministic and consistent

Marginal (with no evidence) is the solution
to #P-hard SAT′ problem [Valiant 1979]⇒
no tractable circuit for marginals!

146/158

Expressive efficiency of circuits

smooth & Decomp.

MAR

det. & cons.

MAP

det. & Decomp.

[Darwiche et al. 2002b]

: strictly more succinct

smooth & cons.

[Peharz et al. 2015]*

: equally succinct

̸≤

̸≤

Consider following circuit over Boolean variables:∏r
i (Yi · Zi1 + (¬Yi) · Zi2), Zij ∈ X

Size linear in the number of variables

Deterministic and consistent

Marginal (with no evidence) is the solution
to #P-hard SAT′ problem [Valiant 1979]⇒
no tractable circuit for marginals!

146/158

Expressive efficiency of circuits

smooth & Decomp.

MAR

det. & cons.

MAP

det. & Decomp.

[Darwiche et al. 2002b]

: strictly more succinct

smooth & cons.

[Peharz et al. 2015]*

: equally succinct

̸≤

̸≤

Consider the marginal distribution p(X) from a
naive Bayes distribution p(X, C):

Linear-size smooth and decomposable
circuit

MAP of p(X) solves marginal MAP of
p(X, C) which is NP-hard [de Campos 2011]

⇒ no tractable circuit for MAP!

146/158

Expressive efficiency of circuits

smooth & Decomp.

MAR

det. & cons.

MAP

det. & Decomp.

[Darwiche et al. 2002b]

: strictly more succinct

smooth & cons.

[Peharz et al. 2015]*

: equally succinct

̸≤

̸≤

Consider the marginal distribution p(X) from a
naive Bayes distribution p(X, C):

Linear-size smooth and decomposable
circuit

MAP of p(X) solves marginal MAP of
p(X, C) which is NP-hard [de Campos 2011]

⇒ no tractable circuit for MAP!

146/158

Expressive efficiency of circuits

smooth & Decomp.

MAR

det. & cons.

MAP

det. & Decomp.

[Darwiche et al. 2002b]

: strictly more succinct

smooth & cons.

[Peharz et al. 2015]*

: equally succinct

̸≤

̸≤

Consider the marginal distribution p(X) from a
naive Bayes distribution p(X, C):

Linear-size smooth and decomposable
circuit

MAP of p(X) solves marginal MAP of
p(X, C) which is NP-hard [de Campos 2011]

⇒ no tractable circuit for MAP!

146/158

Expressive efficiency of circuits

smooth & Decomp.

MAR

det. & cons.

MAP

det. & Decomp.

[Darwiche et al. 2002b]

: strictly more succinct

smooth & cons.

[Peharz et al. 2015]*

: equally succinct

̸≤
, ̸≥

̸≤
, ̸≥

Neither smooth&decomposable nor
deterministic& consistent circuits are more
succinct than the other!
⇒ Choose tractable circuit family based

on your query
More theoretical questions remaining

⇒ “Complete the map”

146/158

Expressive efficiency of circuits

smooth & Decomp.

MAR

det. & cons.

MAP

det. & Decomp.

[Darwiche et al. 2002b]

: strictly more succinct

smooth & cons.

[Peharz et al. 2015]*

: equally succinct

̸≤
, ̸≥

̸≤
, ̸≥

Neither smooth&decomposable nor
deterministic& consistent circuits are more
succinct than the other!
⇒ Choose tractable circuit family based

on your query
More theoretical questions remaining

⇒ “Complete the map”

146/158

Conclusions

Why tractable inference?
or expressiveness vs tractability

Probabilistic circuits
a unified framework for tractable probabilistic modeling

Learning circuits
learning their structure and parameters from data

Representations and theory
tracing the boundaries of tractability and connections to other formalisms

148/158

Q:M
GANs

VAEs

Flows

Trees

Mixtures

Factorized

EVI MAR CON MAP MMAP ADV

I
I
I
I I

takeaway #1: tractability is a spectrum
149/158

m
or
e
ex
pr
es
si
ve

effi
ci
en

t

le
ss

ex
pr
es
si
ve

effi
ci
en

t

more tractable queries

less tractable queries

SPNs

PSDDs

CNets

BNs

NFs

ACsAoGs

NADEs

MNs
VAEs

GANs

Fully factorized

NB
Trees

Polytrees
TJT

LTM

Mixtures

takeaway #2: you can be both tractable and expressive
150/158

×

X1 X2 X3 X1 X1

w1 w2
×

X1 ≤ θ X2

×

X1 > θ X2

w1 w2

takeaway #3: probabilistic circuits are a foundation for
tractable inference and learning

151/158

Challenge #1
hybridizing tractable and intractable models

Hybridize probabilistic inference:
tractable models inside intractable loops
and intractable small boxes glued by tractable inference!

152/158

Challenge #2
scaling tractable learning

Learn tractable models
onmillions of datapoints
and thousands of features
in tractable time!

153/158

Challenge #3
deep theoretical understanding

Trace a precise picture
of the whole tractabile spectrum
and complete the map of succintness!

154/158

Challenge #4
advanced and automated reasoning

Move beyond single probabilistic queries
towards fully automated reasoning!

155/158

Readings

Probabilistic circuits: Representation and Learning
starai.cs.ucla.edu/papers/LecNoAAAI20.pdf

Foundations of Sum-Product Networks for probabilistic modeling
tinyurl.com/w65po5d

Slides for this tutorial
starai.cs.ucla.edu/slides/AAAI20.pdf

156/158

starai.cs.ucla.edu/papers/LecNoAAAI20.pdf
tinyurl.com/w65po5d
starai.cs.ucla.edu/slides/AAAI20.pdf

Code

Juice.jl advanced logical+probabilistic inference with circuits in Julia
github.com/Juice-jl/ProbabilisticCircuits.jl

SumProductNetworks.jl SPN routines in Julia
github.com/trappmartin/SumProductNetworks.jl
SPFlow easy and extensible python library for SPNs
github.com/SPFlow/SPFlow
Libra several structure learning algorithms in OCaml
libra.cs.uoregon.edu

More refs ⇒ github.com/arranger1044/awesome-spn
157/158

github.com/trappmartin/SumProductNetworks.jl
github.com/SPFlow/SPFlow
libra.cs.uoregon.edu
github.com/arranger1044/awesome-spn

Acknowledgments

We thank Nicola Di Mauro for his help with a previous version of this tutorial
we gave at UAI19:

http://web.cs.ucla.edu/~guyvdb/slides/TPMTutorialUAI19.pdf

In the same way,
we are grateful to all the people from the logical and probabilistic circuits communities
whose insightful discussions, ideas and research helped and inspired us.

(12 pages of references incoming!)

158/158

http://web.cs.ucla.edu/~guyvdb/slides/TPMTutorialUAI19.pdf

References I
⊕ Chow, C and C Liu (1968). “Approximating discrete probability distributions with dependence trees”. In: IEEE Transactions on Information Theory 14.3, pp. 462–467.

⊕ Valiant, Leslie G (1979). “The complexity of enumeration and reliability problems”. In: SIAM Journal on Computing 8.3, pp. 410–421.

⊕ Bryant, R (1986). “Graph-based algorithms for boolean manipulation”. In: IEEE Transactions on Computers, pp. 677–691.

⊕ Cooper, Gregory F (1990). “The computational complexity of probabilistic inference using Bayesian belief networks”. In: Artificial intelligence 42.2-3, pp. 393–405.

⊕ Dagum, Paul and Michael Luby (1993). “Approximating probabilistic inference in Bayesian belief networks is NP-hard”. In: Artificial intelligence 60.1, pp. 141–153.

⊕ Zhang, Nevin Lianwen and David Poole (1994). “A simple approach to Bayesian network computations”. In: Proceedings of the Biennial Conference-Canadian Society for
Computational Studies of Intelligence, pp. 171–178.

⊕ Roth, Dan (1996). “On the hardness of approximate reasoning”. In: Artificial Intelligence 82.1–2, pp. 273–302.

⊕ Dechter, Rina (1998). “Bucket elimination: A unifying framework for probabilistic inference”. In: Learning in graphical models. Springer, pp. 75–104.

⊕ Dasgupta, Sanjoy (1999). “Learning polytrees”. In: Proceedings of the Fifteenth conference on Uncertainty in artificial intelligence. Morgan Kaufmann Publishers Inc., pp. 134–141.

⊕ Meilă, Marina and Michael I. Jordan (2000). “Learning with mixtures of trees”. In: Journal of Machine Learning Research 1, pp. 1–48.

⊕ Bach, Francis R. and Michael I. Jordan (2001). “Thin Junction Trees”. In: Advances in Neural Information Processing Systems 14. MIT Press, pp. 569–576.

⊕ Darwiche, Adnan (2001). “Recursive conditioning”. In: Artificial Intelligence 126.1-2, pp. 5–41.

References II
⊕ Yedidia, Jonathan S, William T Freeman, and Yair Weiss (2001). “Generalized belief propagation”. In: Advances in neural information processing systems, pp. 689–695.

⊕ Chickering, Max (2002). “The WinMine Toolkit”. In: Microsoft, Redmond.

⊕ Darwiche, Adnan and Pierre Marquis (2002a). “A knowledge compilation map”. In: Journal of Artificial Intelligence Research 17, pp. 229–264.

⊕ — (2002b). “A knowledge compilation map”. In: Journal of Artificial Intelligence Research 17.1, pp. 229–264.

⊕ Dechter, Rina, Kalev Kask, and Robert Mateescu (2002). “Iterative join-graph propagation”. In: Proceedings of the Eighteenth conference on Uncertainty in artificial intelligence. Morgan
Kaufmann Publishers Inc., pp. 128–136.

⊕ Darwiche, Adnan (2003). “A Differential Approach to Inference in Bayesian Networks”. In: J.ACM.

⊕ Sang, Tian, Paul Beame, and Henry A Kautz (2005). “Performing Bayesian inference by weighted model counting”. In: AAAI. Vol. 5, pp. 475–481.

⊕ Chavira, Mark, Adnan Darwiche, and Manfred Jaeger (2006). “Compiling relational Bayesian networks for exact inference”. In: International Journal of Approximate Reasoning 42.1-2,
pp. 4–20.

⊕ Park, James D and Adnan Darwiche (2006). “Complexity results and approximation strategies for MAP explanations”. In: Journal of Artificial Intelligence Research 21, pp. 101–133.

⊕ De Raedt, Luc, Angelika Kimmig, and Hannu Toivonen (2007). “ProbLog: A Probabilistic Prolog and Its Application in Link Discovery.”. In: IJCAI. Vol. 7. Hyderabad, pp. 2462–2467.

⊕ Dechter, Rina and Robert Mateescu (2007). “AND/OR search spaces for graphical models”. In: Artificial intelligence 171.2-3, pp. 73–106.

⊕ Kulesza, A. and F. Pereira (2007). “Structured Learning with Approximate Inference”. In: Advances in Neural Information Processing Systems 20. MIT Press, pp. 785–792.

References III
⊕ Marinescu, Radu and Rina Dechter (2007). “Best-first AND/OR search for 0/1 integer programming”. In: International Conference on Integration of Artificial Intelligence (AI) and

Operations Research (OR) Techniques in Constraint Programming. Springer, pp. 171–185.

⊕ Riguzzi, Fabrizio (2007). “A top down interpreter for LPAD and CP-logic”. In: Congress of the Italian Association for Artificial Intelligence. Springer, pp. 109–120.

⊕ Lowd, Daniel and Pedro Domingos (2008). “Learning Arithmetic Circuits”. In: Proceedings of the Twenty-Fourth Conference on Uncertainty in Artificial Intelligence. UAI’08. Helsinki,
Finland: AUAI Press, pp. 383–392. ISBN: 0-9749039-4-9. URL: http://dl.acm.org/citation.cfm?id=3023476.3023522.

⊕ Olteanu, Dan and Jiewen Huang (2008). “Using OBDDs for efficient query evaluation on probabilistic databases”. In: International Conference on Scalable Uncertainty Management.
Springer, pp. 326–340.

⊕ Koller, Daphne and Nir Friedman (2009). Probabilistic Graphical Models: Principles and Techniques. MIT Press.

⊕ Choi, Arthur and Adnan Darwiche (2010). “Relax, compensate and then recover”. In: JSAI International Symposium on Artificial Intelligence. Springer, pp. 167–180.

⊕ Lowd, Daniel and Pedro Domingos (2010). “Approximate inference by compilation to arithmetic circuits”. In: Advances in Neural Information Processing Systems, pp. 1477–1485.

⊕ Campos, Cassio Polpo de (2011). “New complexity results for MAP in Bayesian networks”. In: IJCAI. Vol. 11, pp. 2100–2106.

⊕ Darwiche, Adnan (2011). “SDD: A New Canonical Representation of Propositional Knowledge Bases”. In: Proceedings of the Twenty-Second International Joint Conference on Artificial
Intelligence - Volume Volume Two. IJCAI’11. Barcelona, Catalonia, Spain. ISBN: 978-1-57735-514-4.

⊕ de Campos, Cassio P (2011). “New complexity results for MAP in Bayesian networks”. In: IJCAI. Vol. 11, pp. 2100–2106.

⊕ Larochelle, Hugo and Iain Murray (2011). “The Neural Autoregressive Distribution Estimator”. In: International Conference on Artificial Intelligence and Statistics, pp. 29–37.

http://dl.acm.org/citation.cfm?id=3023476.3023522

References IV
⊕ Poon, Hoifung and Pedro Domingos (2011). “Sum-Product Networks: a New Deep Architecture”. In: UAI 2011.

⊕ Sontag, David, Amir Globerson, and Tommi Jaakkola (2011). “Introduction to dual decomposition for inference”. In: Optimization for Machine Learning 1, pp. 219–254.

⊕ Gens, Robert and Pedro Domingos (2012). “Discriminative Learning of Sum-Product Networks”. In: Advances in Neural Information Processing Systems 25, pp. 3239–3247.

⊕ — (2013). “Learning the Structure of Sum-Product Networks”. In: Proceedings of the ICML 2013, pp. 873–880.

⊕ Lowd, Daniel and Amirmohammad Rooshenas (2013). “Learning Markov Networks With Arithmetic Circuits”. In: Proceedings of the 16th International Conference on Artificial
Intelligence and Statistics. Vol. 31. JMLR Workshop Proceedings, pp. 406–414.

⊕ Peharz, Robert, Bernhard Geiger, and Franz Pernkopf (2013). “Greedy Part-Wise Learning of Sum-Product Networks”. In: ECML-PKDD 2013.

⊕ Goodfellow, Ian et al. (2014). “Generative adversarial nets”. In: Advances in neural information processing systems, pp. 2672–2680.

⊕ Kingma, Diederik P and Max Welling (2014). “Auto-Encoding Variational Bayes”. In: Proceedings of the 2nd International Conference on Learning Representations (ICLR). 2014.

⊕ Kisa, Doga et al. (2014a). “Probabilistic sentential decision diagrams”. In: Proceedings of the 14th International Conference on Principles of Knowledge Representation and Reasoning
(KR). Vienna, Austria. URL: http://starai.cs.ucla.edu/papers/KisaKR14.pdf.

⊕ — (2014b). “Probabilistic sentential decision diagrams”. In: Proceedings of the 14th International Conference on Principles of Knowledge Representation and Reasoning (KR). Vienna,
Austria.

⊕ Martens, James and Venkatesh Medabalimi (2014). “On the Expressive Efficiency of Sum Product Networks”. In: CoRR abs/1411.7717.

http://starai.cs.ucla.edu/papers/KisaKR14.pdf

References V
⊕ Peharz, Robert, Robert Gens, and Pedro Domingos (2014). “Learning Selective Sum-Product Networks”. In: Workshop on Learning Tractable Probabilistic Models. LTPM.

⊕ Rahman, Tahrima, Prasanna Kothalkar, and Vibhav Gogate (2014). “Cutset Networks: A Simple, Tractable, and Scalable Approach for Improving the Accuracy of Chow-Liu Trees”.
In: Machine Learning and Knowledge Discovery in Databases. Vol. 8725. LNCS. Springer, pp. 630–645.

⊕ Rezende, Danilo Jimenez, Shakir Mohamed, and Daan Wierstra (2014). “Stochastic backprop. and approximate inference in deep generative models”. In: arXiv preprint
arXiv:1401.4082.

⊕ Rooshenas, Amirmohammad and Daniel Lowd (2014). “Learning Sum-Product Networks with Direct and Indirect Variable Interactions”. In: Proceedings of ICML 2014.

⊕ Adel, Tameem, David Balduzzi, and Ali Ghodsi (2015). “Learning the Structure of Sum-Product Networks via an SVD-based Algorithm”. In: Uncertainty in Artificial Intelligence.

⊕ Bekker, Jessa et al. (2015). “Tractable Learning for Complex Probability Queries”. In: Advances in Neural Information Processing Systems 28 (NIPS).

⊕ Burda, Yuri, Roger Grosse, and Ruslan Salakhutdinov (2015). “Importance weighted autoencoders”. In: arXiv preprint arXiv:1509.00519.

⊕ Choi, Arthur, Guy Van den Broeck, and Adnan Darwiche (2015a). “Tractable learning for structured probability spaces: A case study in learning preference distributions”. In:
Twenty-Fourth International Joint Conference on Artificial Intelligence (IJCAI).

⊕ Choi, Arthur, Guy Van Den Broeck, and Adnan Darwiche (2015b). “Tractable Learning for Structured Probability Spaces: A Case Study in Learning Preference Distributions”. In:
Proceedings of the 24th International Conference on Artificial Intelligence. IJCAI’15. Buenos Aires, Argentina: AAAI Press, pp. 2861–2868. ISBN: 978-1-57735-738-4. URL:
http://dl.acm.org/citation.cfm?id=2832581.2832649.

⊕ Dennis, Aaron and Dan Ventura (2015). “Greedy Structure Search for Sum-product Networks”. In: IJCAI’15. Buenos Aires, Argentina: AAAI Press, pp. 932–938. ISBN:
978-1-57735-738-4.

http://dl.acm.org/citation.cfm?id=2832581.2832649

References VI
⊕ Di Mauro, Nicola, Antonio Vergari, and Floriana Esposito (2015a). “Learning Accurate Cutset Networks by Exploiting Decomposability”. In: Proceedings of AIXIA. Springer,

pp. 221–232.

⊕ Di Mauro, Nicola, Antonio Vergari, and Teresa M.A. Basile (2015b). “Learning Bayesian Random Cutset Forests”. In: Proceedings of ISMIS. Springer, pp. 122–132.

⊕ Fierens, Daan et al. (2015). “Inference and Learning in Probabilistic Logic Programs using Weighted Boolean Formulas”. In: Theory and Practice of Logic Programming 15 (03),
pp. 358–401. ISSN: 1475-3081. DOI: 10.1017/S1471068414000076. URL: http://starai.cs.ucla.edu/papers/FierensTPLP15.pdf.

⊕ Germain, Mathieu et al. (2015). “MADE: Masked Autoencoder for Distribution Estimation”. In: CoRR abs/1502.03509.

⊕ Peharz, Robert (2015). “Foundations of Sum-Product Networks for Probabilistic Modeling”. PhD thesis. Graz University of Technology, SPSC.

⊕ Peharz, Robert et al. (2015). “On Theoretical Properties of Sum-Product Networks”. In: The Journal of Machine Learning Research.

⊕ Vergari, Antonio, Nicola Di Mauro, and Floriana Esposito (2015). “Simplifying, Regularizing and Strengthening Sum-Product Network Structure Learning”. In: ECML-PKDD 2015.

⊕ Vlasselaer, Jonas et al. (2015). “Anytime Inference in Probabilistic Logic Programs with Tp-compilation”. In: Proceedings of 24th International Joint Conference on Artificial Intelligence
(IJCAI). URL: http://starai.cs.ucla.edu/papers/VlasselaerIJCAI15.pdf.

⊕ Belle, Vaishak and Luc De Raedt (2016). “Semiring Programming: A Framework for Search, Inference and Learning”. In: arXiv preprint arXiv:1609.06954.

⊕ Cohen, Nadav, Or Sharir, and Amnon Shashua (2016). “On the expressive power of deep learning: A tensor analysis”. In: Conference on Learning Theory, pp. 698–728.

⊕ Friesen, Abram L and Pedro Domingos (2016). “Submodular Sum-product Networks for Scene Understanding”. In:

https://doi.org/10.1017/S1471068414000076
http://starai.cs.ucla.edu/papers/FierensTPLP15.pdf
http://starai.cs.ucla.edu/papers/VlasselaerIJCAI15.pdf

References VII
⊕ Jaini, Priyank et al. (2016). “Online Algorithms for Sum-Product Networks with Continuous Variables”. In: Probabilistic Graphical Models - Eighth International Conference, PGM 2016,

Lugano, Switzerland, September 6-9, 2016. Proceedings, pp. 228–239. URL: http://jmlr.org/proceedings/papers/v52/jaini16.html.

⊕ Oord, Aaron van den, Nal Kalchbrenner, and Koray Kavukcuoglu (2016). “Pixel recurrent neural networks”. In: arXiv preprint arXiv:1601.06759.

⊕ Oztok, Umut, Arthur Choi, and Adnan Darwiche (2016). “Solving PP-PP-complete problems using knowledge compilation”. In: Fifteenth International Conference on the Principles of
Knowledge Representation and Reasoning.

⊕ Peharz, Robert et al. (2016). “On the Latent Variable Interpretation in Sum-Product Networks”. In: IEEE Transactions on Pattern Analysis and Machine Intelligence PP, Issue 99. URL:
http://arxiv.org/abs/1601.06180.

⊕ Pronobis, A. and R. P. N. Rao (2016). “Learning Deep Generative Spatial Models for Mobile Robots”. In: ArXiv e-prints. arXiv: 1610.02627 [cs.RO].

⊕ Rahman, Tahrima and Vibhav Gogate (2016). “Learning Ensembles of Cutset Networks”. In: Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence. AAAI’16. Phoenix,
Arizona: AAAI Press, pp. 3301–3307. URL: http://dl.acm.org/citation.cfm?id=3016100.3016365.

⊕ Rashwan, Abdullah, Han Zhao, and Pascal Poupart (2016). “Online and Distributed Bayesian Moment Matching for Parameter Learning in Sum-Product Networks”. In: Proceedings
of the 19th International Conference on Artificial Intelligence and Statistics, pp. 1469–1477.

⊕ Rooshenas, Amirmohammad and Daniel Lowd (2016). “Discriminative Structure Learning of Arithmetic Circuits”. In: Proceedings of the 19th International Conference on Artificial
Intelligence and Statistics, pp. 1506–1514.

⊕ Sguerra, Bruno Massoni and Fabio G Cozman (2016). “Image classification using sum-product networks for autonomous flight of micro aerial vehicles”. In: 2016 5th Brazilian
Conference on Intelligent Systems (BRACIS). IEEE, pp. 139–144.

http://jmlr.org/proceedings/papers/v52/jaini16.html
http://arxiv.org/abs/1601.06180
http://arxiv.org/abs/1610.02627
http://dl.acm.org/citation.cfm?id=3016100.3016365

References VIII
⊕ Sharir, Or et al. (2016). “Tractable generative convolutional arithmetic circuits”. In: arXiv preprint arXiv:1610.04167.

⊕ Shen, Yujia, Arthur Choi, and Adnan Darwiche (2016). “Tractable Operations for Arithmetic Circuits of Probabilistic Models”. In: Advances in Neural Information Processing Systems 29:
Annual Conference on Neural Information Processing Systems 2016, December 5-10, 2016, Barcelona, Spain, pp. 3936–3944.

⊕ Vlasselaer, Jonas et al. (2016). “Exploiting Local and Repeated Structure in Dynamic Bayesian Networks”. In: Artificial Intelligence 232, pp. 43 –53. ISSN: 0004-3702. DOI:
10.1016/j.artint.2015.12.001.

⊕ Yuan, Zehuan et al. (2016). “Modeling spatial layout for scene image understanding via a novel multiscale sum-product network”. In: Expert Systems with Applications 63,
pp. 231–240.

⊕ Zhao, Han, Pascal Poupart, and Geoffrey J Gordon (2016a). “A Unified Approach for Learning the Parameters of Sum-Product Networks”. In: Advances in Neural Information
Processing Systems 29. Ed. by D. D. Lee et al. Curran Associates, Inc., pp. 433–441.

⊕ Zhao, Han et al. (2016b). “Collapsed Variational Inference for Sum-Product Networks”. In: In Proceedings of the 33rd International Conference on Machine Learning. Vol. 48.

⊕ Alemi, Alexander A et al. (2017). “Fixing a broken ELBO”. In: arXiv preprint arXiv:1711.00464.

⊕ Choi, YooJung, Adnan Darwiche, and Guy Van den Broeck (2017). “Optimal feature selection for decision robustness in Bayesian networks”. In: Proceedings of the 26th International
Joint Conference on Artificial Intelligence (IJCAI).

⊕ Conaty, Diarmaid, Denis Deratani Mauá, and Cassio Polpo de Campos (2017). “Approximation Complexity of Maximum A Posteriori Inference in Sum-Product Networks”. In:
Proceedings of the Thirty-Third Conference on Uncertainty in Artificial Intelligence. Ed. by Gal Elidan and Kristian Kersting. AUAI Press, pp. 322–331.

⊕ Di Mauro, Nicola et al. (2017). “Fast and Accurate Density Estimation with Extremely Randomized Cutset Networks”. In: ECML-PKDD 2017.

https://doi.org/10.1016/j.artint.2015.12.001

References IX
⊕ Kimmig, Angelika, Guy Van den Broeck, and Luc De Raedt (2017). “Algebraic model counting”. In: Journal of Applied Logic 22, pp. 46–62.

⊕ Liang, Yitao, Jessa Bekker, and Guy Van den Broeck (2017a). “Learning the structure of probabilistic sentential decision diagrams”. In: Proceedings of the 33rd Conference on
Uncertainty in Artificial Intelligence (UAI).

⊕ Liang, Yitao and Guy Van den Broeck (2017b). “Towards Compact Interpretable Models: Shrinking of Learned Probabilistic Sentential Decision Diagrams”. In: IJCAI 2017 Workshop
on Explainable Artificial Intelligence (XAI). URL: http://starai.cs.ucla.edu/papers/LiangXAI17.pdf.

⊕ Pronobis, Andrzej, Francesco Riccio, and Rajesh PN Rao (2017). “Deep spatial affordance hierarchy: Spatial knowledge representation for planning in large-scale environments”. In:
ICAPS 2017 Workshop on Planning and Robotics, Pittsburgh, PA, USA.

⊕ Rathke, Fabian, Mattia Desana, and Christoph Schnörr (2017). “Locally adaptive probabilistic models for global segmentation of pathological oct scans”. In: International Conference
on Medical Image Computing and Computer-Assisted Intervention. Springer, pp. 177–184.

⊕ Salimans, Tim et al. (2017). “PixelCNN++: Improving the PixelCNN with discretized logistic mixture likelihood and other modifications”. In: arXiv preprint arXiv:1701.05517.

⊕ Shen, Yujia, Arthur Choi, and Adnan Darwiche (2017). “A Tractable Probabilistic Model for Subset Selection.”. In: UAI.

⊕ Van den Broeck, Guy and Dan Suciu (2017). Query Processing on Probabilistic Data: A Survey. Foundations and Trends in Databases. Now Publishers. DOI: 10.1561/1900000052.
URL: http://starai.cs.ucla.edu/papers/VdBFTDB17.pdf.

⊕ Butz, Cory J et al. (2018). “An Empirical Study of Methods for SPN Learning and Inference”. In: International Conference on Probabilistic Graphical Models, pp. 49–60.

⊕ Choi, YooJung and Guy Van den Broeck (2018). “On robust trimming of Bayesian network classifiers”. In: arXiv preprint arXiv:1805.11243.

http://starai.cs.ucla.edu/papers/LiangXAI17.pdf
https://doi.org/10.1561/1900000052
http://starai.cs.ucla.edu/papers/VdBFTDB17.pdf

References X
⊕ Di Mauro, Nicola et al. (2018). “Sum-Product Network structure learning by efficient product nodes discovery”. In: Intelligenza Artificiale 12.2, pp. 143–159.

⊕ Friedman, Tal and Guy Van den Broeck (2018). “Approximate Knowledge Compilation by Online Collapsed Importance Sampling”. In: Advances in Neural Information Processing
Systems 31 (NeurIPS). URL: http://starai.cs.ucla.edu/papers/FriedmanNeurIPS18.pdf.

⊕ Jaini, Priyank, Amur Ghose, and Pascal Poupart (2018). “Prometheus: Directly Learning Acyclic Directed Graph Structures for Sum-Product Networks”. In: International Conference
on Probabilistic Graphical Models, pp. 181–192.

⊕ Molina, Alejandro et al. (2018). “Mixed Sum-Product Networks: A Deep Architecture for Hybrid Domains”. In: AAAI.

⊕ Rashwan, Abdullah, Pascal Poupart, and Chen Zhitang (2018). “Discriminative Training of Sum-Product Networks by Extended Baum-Welch”. In: International Conference on
Probabilistic Graphical Models, pp. 356–367.

⊕ Shen, Yujia, Arthur Choi, and Adnan Darwiche (2018). “Conditional PSDDs: Modeling and learning with modular knowledge”. In: Thirty-Second AAAI Conference on Artificial Intelligence.

⊕ Zheng, Kaiyu, Andrzej Pronobis, and Rajesh PN Rao (2018). “Learning graph-structured sum-product networks for probabilistic semantic maps”. In: Thirty-Second AAAI Conference on
Artificial Intelligence.

⊕ Dai, Bin and David Wipf (2019). “Diagnosing and enhancing vae models”. In: arXiv preprint arXiv:1903.05789.

⊕ Ghosh, Partha et al. (2019). “From variational to deterministic autoencoders”. In: arXiv preprint arXiv:1903.12436.

⊕ Holtzen, Steven, Todd Millstein, and Guy Van den Broeck (2019). “Symbolic Exact Inference for Discrete Probabilistic Programs”. In: arXiv preprint arXiv:1904.02079.

⊕ Khosravi, Pasha et al. (2019a). “On Tractable Computation of Expected Predictions”. In: Advances in Neural Information Processing Systems, pp. 11167–11178.

http://starai.cs.ucla.edu/papers/FriedmanNeurIPS18.pdf

References XI
⊕ Khosravi, Pasha et al. (2019b). “What to Expect of Classifiers? Reasoning about Logistic Regression with Missing Features”. In: arXiv preprint arXiv:1903.01620.

⊕ Khosravi, Pasha et al. (2019c). “What to Expect of Classifiers? Reasoning about Logistic Regression with Missing Features”. In: Proceedings of the 28th International Joint Conference
on Artificial Intelligence (IJCAI).

⊕ Kossen, Jannik et al. (2019). “Structured Object-Aware Physics Prediction for Video Modeling and Planning”. In: arXiv preprint arXiv:1910.02425.

⊕ Liang, Yitao and Guy Van den Broeck (2019). “Learning Logistic Circuits”. In: Proceedings of the 33rd Conference on Artificial Intelligence (AAAI).

⊕ Peharz, Robert et al. (2019a). “Random Sum-Product Networks: A Simple and Effective Approach to Probabilistic Deep Learning”. In: Uncertainty in Artificial Intelligence.

⊕ Peharz, Robert et al. (2019b). “Random sum-product networks: A simple but effective approach to probabilistic deep learning”. In: Proceedings of UAI.

⊕ Shao, Xiaoting et al. (2019). “Conditional Sum-Product Networks: Imposing Structure on Deep Probabilistic Architectures”. In: arXiv preprint arXiv:1905.08550.

⊕ Shih, Andy et al. (2019). “Smoothing Structured Decomposable Circuits”. In: arXiv preprint arXiv:1906.00311.

⊕ Stelzner, Karl, Robert Peharz, and Kristian Kersting (2019). “Faster Attend-Infer-Repeat with Tractable Probabilistic Models”. In: Proceedings of the 36th International Conference on
Machine Learning. Ed. by Kamalika Chaudhuri and Ruslan Salakhutdinov. Vol. 97. Proceedings of Machine Learning Research. Long Beach, California, USA: PMLR,
pp. 5966–5975. URL: http://proceedings.mlr.press/v97/stelzner19a.html.

⊕ Tan, Ping Liang and Robert Peharz (2019). “Hierarchical Decompositional Mixtures of Variational Autoencoders”. In: Proceedings of the 36th International Conference on Machine
Learning. Ed. by Kamalika Chaudhuri and Ruslan Salakhutdinov. Vol. 97. Proceedings of Machine Learning Research. Long Beach, California, USA: PMLR, pp. 6115–6124. URL:
http://proceedings.mlr.press/v97/tan19b.html.

http://proceedings.mlr.press/v97/stelzner19a.html
http://proceedings.mlr.press/v97/tan19b.html

References XII

⊕ Trapp, Martin et al. (2019). “Bayesian Learning of Sum-Product Networks”. In: Advances in neural information processing systems (NeurIPS).

⊕ Vergari, Antonio et al. (2019). “Automatic Bayesian density analysis”. In: Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 33, pp. 5207–5215.

	Why tractable inference?
	Probabilistic Circuits
	Learning Probabilistic Circuits
	Representations and theory
	Conclusions

