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Fully factorized

NaiveBayes AndOrGraphs PDGs

Trees PSDDs CNets LTMs SPNs NADEs
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a unifying framework for tractable models
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Why tractable inference?
or expressiveness vs tractability

7/158



Why tractable inference?
or expressiveness vs tractability

Probabilistic circuits
a unified framework for tractable probabilistic modeling

7/158



Why tractable inference?
or expressiveness vs tractability

Probabilistic circuits
a unified framework for tractable probabilistic modeling

Learning circuits
learning their structure and parameters from data

7/158



Why tractable inference?
or expressiveness vs tractability

Probabilistic circuits
a unified framework for tractable probabilistic modeling

Learning circuits
learning their structure and parameters from data

Representations and theory
tracing the boundaries of tractability and connections to other formalisms

7/158



Why tractable inference?
or the inherent trade-off of tractability vs. expressiveness



Why probabilistic inference?

q1: What is the probability that today is a Monday and
there is a traffic jam on 5th Avenue?
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Why probabilistic inference?

q1: What is the probability that today is a Monday and
there is a traffic jam on 5th Avenue?

q2: Which day is most likely to have a traffic jam on my
route to work?

⇒ fitting a predictive model!
⇒ answering probabilistic queries on a probabilistic

model of the worldm

q1(m) = ? q2(m) = ?
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Why probabilistic inference?

q1: What is the probability that today is a Monday and
there is a traffic jam on 5th Avenue?

X = {Day,Time, JamStr1, JamStr2, . . . , JamStrN}

q1(m) = pm(Day = Mon, Jam5th = 1)
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Why probabilistic inference?

q2: Which day is most likely to have a traffic jam on my
route to work?

X = {Day,Time, JamStr1, JamStr2, . . . , JamStrN}

q2(m) = argmaxd pm(Day = d ∧
∨

i∈route JamStri)
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Why probabilistic inference?

q2: Which day is most likely to have a traffic jam on my
route to work?

X = {Day,Time, JamStr1, JamStr2, . . . , JamStrN}

q2(m) = argmaxd pm(Day = d ∧
∨

i∈route JamStri)

⇒ marginals + MAP + logical events © fineartamerica.com

9/158

fineartamerica.com


Tractable Probabilistic Inference

A class of queriesQ is tractable on a family of probabilistic modelsM
iff for any query q ∈ Q and modelm ∈M
exactly computing q(m) runs in timeO(poly(|m|)).
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Tractable Probabilistic Inference

A class of queriesQ is tractable on a family of probabilistic modelsM
iff for any query q ∈ Q and modelm ∈M
exactly computing q(m) runs in timeO(poly(|m|)).

⇒ often poly will in fact be linear!

⇒ Note: ifM andQ are compact in the number of random variablesX,
that is, |m|, |q| ∈ O(poly(|X|)), then query time isO(poly(|X|)).
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Why exact inference?
or “What about approximate inference?”

1. No need for approximations when we can be exact

2. We can do exact inference in approximate models [Dechter et al. 2002; Choi

et al. 2010; Lowd et al. 2010; Sontag et al. 2011; Friedman et al. 2018]

3. Approximations shall come with guarantees

4. Approximate inference (even with guarantees) can mislead learners
[Kulesza et al. 2007]5. Approximations can be intractable as well [Dagum et al. 1993; Roth 1996]
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⇒ do we lose some expressiveness?

2. We can do exact inference in approximate models [Dechter et al. 2002; Choi
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2. We can do exact inference in approximate models [Dechter et al. 2002; Choi

et al. 2010; Lowd et al. 2010; Sontag et al. 2011; Friedman et al. 2018]

3. Approximations shall come with guarantees
⇒ sometimes they do, e.g., [Dechter et al. 2007]

4. Approximate inference (even with guarantees) can mislead learners
[Kulesza et al. 2007]5. Approximations can be intractable as well [Dagum et al. 1993; Roth 1996]
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Stay tuned for...

Next: 1. What are classes of queries?

2. Are my favorite models tractable?

3. Are tractable models expressive?

After: We introduce probabilistic circuits as a unified
framework for tractable probabilistic modeling

12/158



Complete evidence (EVI)

q3: What is the probability that today is a Monday at
12.00 and there is a traffic jam only on 5th
Avenue?
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Complete evidence (EVI)

q3: What is the probability that today is a Monday at
12.00 and there is a traffic jam only on 5th
Avenue?

X = {Day,Time, Jam5th, JamStr2, . . . , JamStrN}

q3(m) = pm(X = {Mon, 12.00, 1, 0, . . . , 0})

…fundamental inmaximum likelihood learning

θMLE
m = argmaxθ

∏
x∈D pm(x; θ)

© fineartamerica.com
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Generative Adversarial Networks

minθ maxϕ Ex∼pdata(x)

[
logDϕ(x)

]
+ Ez∼p(z)

[
log(1−Dϕ(Gθ(z)))

]

Goodfellow et al., “Generative adversarial nets”, 2014 14/158



Generative Adversarial Networks

minθ maxϕ Ex∼pdata(x)

[
logDϕ(x)

]
+ Ez∼p(z)

[
log(1−Dϕ(Gθ(z)))

]
no explicit likelihood!

⇒ adversarial training instead of MLE
⇒ no tractable EVI

good sample quality
⇒ but lots of samples needed for MC

unstable training ⇒ mode collapse

Goodfellow et al., “Generative adversarial nets”, 2014 15/158
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Variational Autoencoders

pθ(x) =
∫
pθ(x | z)p(z)dz

an explicit likelihood model!

Rezende et al., “Stochastic backprop. and approximate inference in deep generative models”, 2014
Kingma et al., “Auto-Encoding Variational Bayes”, 2014 17/158



Variational Autoencoders

log pθ(x) ≥ Ez∼qϕ(z|x)
[
log pθ(x | z)

]
−KL(qϕ(z | x)||p(z))

an explicit likelihood model!

... but computing log pθ(x) is intractable

⇒ an infinite and uncountable mixture
⇒ no tractable EVI

we need to optimize the ELBO…
⇒ which is “tricky” [Alemi et al. 2017; Dai

et al. 2019; Ghosh et al. 2019]

18/158
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Autoregressive models

pθ(x) =
∏

i pθ(xi | x1, x2, . . . , xi−1)

an explicit likelihood!

…as a product of factors ⇒ tractable EVI!

many neural variants
NADE [Larochelle et al. 2011],
MADE [Germain et al. 2015]
PixelCNN [Salimans et al. 2017],
PixelRNN [Oord et al. 2016]

X̄1 X̄2 X̄3 X̄4

. . . . . . . . . . . .

X1 X2 X3 X4

20/158



Marginal queries (MAR)

q1: What is the probability that today is a Monday at
12.00 and there is a traffic jam only on 5th
Avenue?

© fineartamerica.com
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Marginal queries (MAR)

q1: What is the probability that today is a Monday at
12.00 and there is a traffic jam only on 5th
Avenue?

q1(m) = pm(Day = Mon, Jam5th = 1)

General: pm(e) =
∫
pm(e,H) dH

where E ⊂ X, H = X \ E © fineartamerica.com
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Marginal queries (MAR)

q1: What is the probability that today is a Monday at
12.00 and there is a traffic jam only on 5th
Avenue?

q1(m) = pm(Day = Mon, Jam5th = 1)

General: pm(e) =
∫
pm(e,H) dH

and if you can answer MAR queries,
then you can also do conditional queries (CON):

pm(q | e) = pm(q, e)

pm(e)

© fineartamerica.com
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Tractable MAR : scene understanding

Fast and exact marginalization over unseen or “do not care” parts in the scene
Stelzner et al., “Faster Attend-Infer-Repeat with Tractable Probabilistic Models”, 2019
Kossen et al., “Structured Object-Aware Physics Prediction for Video Modeling and Planning”, 2019 22/158



Autoregressive models

pθ(x) =
∏

i pθ(xi | x1, x2, . . . , xi−1)

an explicit likelihood!

…as a product of factors ⇒ tractable EVI!

X̄1 X̄2 X̄3 X̄4

. . . . . . . . . . . .

X1 X2 X3 X4
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Autoregressive models

pθ(x) =
∏

i pθ(xi | x1, x2, . . . , xi−1)

an explicit likelihood!

…as a product of factors ⇒ tractable EVI!

... but we need to fix a variable ordering
⇒ only some MAR queries are tractable

for one ordering

X̄1 X̄2 X̄3 X̄4

. . . . . . . . . . . .

X1 X2 X3 X4

24/158



Normalizing flows

pX(x) = pZ(f
−1(x))

∣∣∣det( δf−1

δx

)∣∣∣
an explicit likelihood ⇒ tractable EVI!

... computing the determinant of the Jacobian

Z

X

f−1f
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Normalizing flows

pX(x) = pZ(f
−1(x))

∣∣∣det( δf−1

δx

)∣∣∣
an explicit likelihood ⇒ tractable EVI!

... computing the determinant of the Jacobian

MAR is generally intractable
⇒ unless f is a “trivial” bijection

Z

X

f−1f

26/158
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Probabilistic Graphical Models (PGMs)

Declarative semantics: a clean separation of modeling assumptions from inference

Nodes: random variables
Edges: dependencies

+

Inference: conditioning [Darwiche 2001; Sang et al. 2005]

elimination [Zhang et al. 1994; Dechter 1998]

message passing [Yedidia et al. 2001; Dechter

et al. 2002; Choi et al. 2010; Sontag et al. 2011]

X1

X2

X3

X4

X5

28/158



Complexity of MAR on PGMs

Exact complexity: Computing MAR and CON is #P-complete
⇒ [Cooper 1990; Roth 1996]

Approximation complexity: Computing MAR and COND approximately
within a relative error of 2n

1−ϵ

for any fixed ϵ is NP-hard
⇒ [Dagum et al. 1993; Roth 1996]

29/158



Why? Treewidth!

Treewidth:

Informally, how tree-like is the graphical modelm?
Formally, the minimum width of any tree-decomposition ofm.

Fixed-parameter tractable: MAR and CON on a graphical modelm with
treewidthw take timeO(|X| · 2w), which is linear for fixed widthw
[Dechter 1998; Koller et al. 2009]. ⇒ what about bounding the treewidth by design?

30/158



Low-treewidth PGMs

X1

X2

X3

X4

X5

Trees
[Meilă et al. 2000]

X1

X2

X3

X4

X5

Polytrees
[Dasgupta 1999]

X1 X2

X1 X3 X4

X3 X5

Thin Junction trees
[Bach et al. 2001]

If treewidth is bounded (e.g.≊ 20), exact MAR and CON inference is possible in practice

31/158



Tree distributions

A tree-structured BN [Meilă et al. 2000] where eachXi ∈ X has at most one parent PaXi
.

X1

X2

X3

X4

X5

p(X) =
∏n

i=1
p(xi|Paxi

)

Exact querying: EVI, MAR, CON tasks linear for trees: O(|X|)
Exact learning from d examples takesO(|X|2 · d) with the classical Chow-Liu algorithm1

1Chow et al., “Approximating discrete probability distributions with dependence trees”, 1968 32/158
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What do we lose?

Expressiveness: Ability to represent rich and complex classes of distributions

X1

X2

X3

X4

X5

Bounded-treewidth PGMs lose the ability to represent all possible distributions …

Cohen et al., “On the expressive power of deep learning: A tensor analysis”, 2016
Martens et al., “On the Expressive Efficiency of Sum Product Networks”, 2014 34/158



Mixtures

Mixtures as a convex combination of k (simpler) probabilistic models

−10 −5 0 5 10

X1

0.00

0.05

0.10

0.15

0.20

0.25

p(
X

1)

p(X) = w1·p1(X)+w2·p2(X)

EVI, MAR, CON queries scale linearly in k
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Mixtures

Mixtures as a convex combination of k (simpler) probabilistic models

−10 −5 0 5 10

X1

0.00

0.05

0.10

0.15

0.20

0.25

p(
X

1)

p(X) =p(Z = 1 ) · p1(X|Z = 1 )

+ p(Z = 2 ) · p2(X|Z = 2 )

Mixtures are marginalizing a categorical latent variable Z with k values
⇒ increased expressiveness

35/158



Expressiveness and efficiency

Expressiveness: Ability to represent rich and effective classes of functions

⇒ mixture of Gaussians can approximate any distribution!

Cohen et al., “On the expressive power of deep learning: A tensor analysis”, 2016
Martens et al., “On the Expressive Efficiency of Sum Product Networks”, 2014 36/158



Expressiveness and efficiency

Expressiveness: Ability to represent rich and effective classes of functions

⇒ mixture of Gaussians can approximate any distribution!

Expressive efficiency (succinctness) Ability to represent rich and effective classes of
functions compactly

⇒ but how many components does a Gaussian mixture need?

Cohen et al., “On the expressive power of deep learning: A tensor analysis”, 2016
Martens et al., “On the Expressive Efficiency of Sum Product Networks”, 2014 36/158



How expressive efficient are mixture?
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How expressive efficient are mixture?
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How expressive efficient are mixture?

⇒ stack mixtures like in deep generative models
37/158
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Maximum A Posteriori (MAP)
aka Most Probable Explanation (MPE)

q5: Which combination of roads is most likely to be
jammed on Monday at 9am?
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jammed on Monday at 9am?

q5(m) = argmaxj pm(j1, j2, . . . | Day=M,Time=9)
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Maximum A Posteriori (MAP)
aka Most Probable Explanation (MPE)

q5: Which combination of roads is most likely to be
jammed on Monday at 9am?

q5(m) = argmaxj pm(j1, j2, . . . | Day=M,Time=9)

General: argmaxq pm(q | e)

where Q ∪ E = X © fineartamerica.com
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Maximum A Posteriori (MAP)
aka Most Probable Explanation (MPE)

q5: Which combination of roads is most likely to be
jammed on Monday at 9am?

…intractable for latent variable models!

max
q

pm(q | e) = max
q

∑
z

pm(q, z | e)

̸=
∑
z

max
q

pm(q, z | e)
© fineartamerica.com
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MAP inference : image inpainting
7.3 Face Image Completion
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Figure 7.3: Examples of face image reconstructions, left half is covered.
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Predicting arbitrary patches
given a singlemodel
without the need of retraining.

Poon et al., “Sum-Product Networks: a New Deep Architecture”, 2011
Sguerra et al., “Image classification using sum-product networks for autonomous flight of micro
aerial vehicles”, 2016 40/158
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Marginal MAP (MMAP)
aka Bayesian Network MAP

q6: Which combination of roads is most likely to be
jammed on Monday at 9am?
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Marginal MAP (MMAP)
aka Bayesian Network MAP

q6: Which combination of roads is most likely to be
jammed on Monday at 9am?

q6(m) = argmaxj pm(j1, j2, . . . | Time=9)
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Marginal MAP (MMAP)
aka Bayesian Network MAP

q6: Which combination of roads is most likely to be
jammed on Monday at 9am?

q6(m) = argmaxj pm(j1, j2, . . . | Time=9)

General: argmaxq pm(q | e)
= argmaxq

∑
h pm(q,h | e)

where Q ∪H ∪ E = X
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Marginal MAP (MMAP)
aka Bayesian Network MAP

q6: Which combination of roads is most likely to be
jammed on Monday at 9am?

q6(m) = argmaxj pm(j1, j2, . . . | Time=9)

⇒ NPPP-complete [Park et al. 2006]

⇒ NP-hard for trees [Campos 2011]

⇒ NP-hard even for Naive Bayes [ibid.]
© fineartamerica.com
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Advanced queries

q2: Which day is most likely to have a traffic jam on
my route to work?

© fineartamerica.com

Bekker et al., “Tractable Learning for Complex Probability Queries”, 2015 44/158

fineartamerica.com


Advanced queries

q2: Which day is most likely to have a traffic jam on
my route to work?

q2(m) = argmaxd pm(Day = d∧
∨

i∈route JamStr i)

⇒ marginals + MAP + logical events

© fineartamerica.com
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Advanced queries

q2: Which day is most likely to have a traffic jam on
my route to work?

q7: What is the probability of seeing more traffic jams
in Uptown than Midtown?

© fineartamerica.com
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Advanced queries

q2: Which day is most likely to have a traffic jam on
my route to work?

q7: What is the probability of seeing more traffic jams
in Uptown than Midtown?

⇒ counts + group comparison

© fineartamerica.com

Bekker et al., “Tractable Learning for Complex Probability Queries”, 2015 44/158
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Advanced queries

q2: Which day is most likely to have a traffic jam on
my route to work?

q7: What is the probability of seeing more traffic jams
in Uptown than Midtown?

and more:

expected classification agreement
[Oztok et al. 2016; Choi et al. 2017, 2018]

expected predictions [Khosravi et al. 2019b] © fineartamerica.com

Bekker et al., “Tractable Learning for Complex Probability Queries”, 2015 44/158
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Fully factorized models

A completely disconnected graph. Example: Product of Bernoullis (PoBs)

X1

X2

X3

X4

X5

p(x) =
∏n

i=1
p(xi)

Complete evidence, marginals and MAP, MMAP inference is linear!

⇒ but definitely not expressive…
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Q:M
GANs

VAEs
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Trees

Mixtures

Factorized

EVI MAR CON MAP MMAP ADV

I
I
I
I I

tractable bands
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Expressive models are not very tractable…
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and tractable ones are not very expressive…
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X

probabilistic circuits are at the “sweet spot”
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Probabilistic Circuits



Probabilistic circuits

A probabilistic circuit C over variablesX is a computational graph encoding a
(possibly unnormalized) probability distribution p(X)
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Probabilistic circuits

A probabilistic circuit C over variablesX is a computational graph encoding a
(possibly unnormalized) probability distribution p(X)

⇒ operational semantics!
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Probabilistic circuits

A probabilistic circuit C over variablesX is a computational graph encoding a
(possibly unnormalized) probability distribution p(X)

⇒ operational semantics!

⇒ by constraining the graph we can make inference tractable…
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Stay tuned for...

Next: 1. What are the building blocks of probabilistic circuits?
⇒ How to build a tractable computational graph?

2. For which queries are probabilistic circuits tractable?
⇒ tractable classes induced by structural properties

After: How can probabilistic circuits be learned?
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Distributions as computational graphs

X

Base case: a single node encoding a distribution
⇒ e.g., Gaussian PDF continuous random variable
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Distributions as computational graphs

¬X

Base case: a single node encoding a distribution
⇒ e.g., indicators forX or ¬X for Boolean random variable

56/158



Distributions as computational graphs

x

X

pX(x)

Simple distributions are tractable “black boxes” for:

EVI: output p(x) (density or mass)

MAR: output 1 (normalized) or Z (unnormalized)

MAP: output the mode
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Distributions as computational graphs

1.3

X

.33

Simple distributions are tractable “black boxes” for:

EVI: output p(x) (density or mass)

MAR: output 1 (normalized) or Z (unnormalized)

MAP: output the mode

56/158



Factorizations as product nodes
Divide and conquer complexity

p(X1, X2, X3) = p(X1) · p(X2) · p(X3)

X1 X2 X3

X1

X2

X3

0.0

0.5

1.0

1.5

2.0

2.5

3.0

⇒ e.g. modeling a multivariate Gaussian with diagonal covariance matrix…
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Factorizations as product nodes
Divide and conquer complexity

p(X1, X2, X3) = p(X1) · p(X2) · p(X3)

X1 X2 X3

X1

X2

X3

0.0

0.5

1.0

1.5

2.0

2.5

3.0 ×

X1 X2 X3

⇒ …with a product node over some univariate Gaussian distribution
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Factorizations as product nodes
Divide and conquer complexity

p(x1, x2, x3) = p(x1) · p(x2) · p(x3)

X1 X2 X3

X1

X2

X3

0.0

0.5

1.0

1.5

2.0

2.5

3.0 ×

0.8

X1

0.5

X2

0.9

X3

⇒ feedforward evaluation
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Factorizations as product nodes
Divide and conquer complexity

p(x1, x2, x3) = p(x1) · p(x2) · p(x3)

X1 X2 X3

X1

X2

X3

0.0

0.5

1.0

1.5

2.0

2.5

3.0 .36

0.8

X1

0.5

X2

0.9

X3

⇒ feedforward evaluation
57/158



Mixtures as sum nodes
Enhance expressiveness

−10 −5 0 5 10

X1

0.00

0.05

0.10

0.15

0.20

0.25

p(
X

1)

p(X) = w1·p1(X)+w2·p2(X)

⇒ e.g. modeling a mixture of Gaussians…
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Mixtures as sum nodes
Enhance expressiveness

X1 X1

w1 w2

p(x) = 0.2·p1(x)+0.8·p2(x)

⇒ …as weighted a sum node over Gaussian input distributions
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Mixtures as sum nodes
Enhance expressiveness

.44

0.2

X1

0.5

X1

0.2 0.8

p(x) = 0.2·p1(x)+0.8·p2(x)

⇒ by stacking them we increase expressive efficiency

58/158



A grammar for tractable models
Recursive semantics of probabilistic circuits

X1
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A grammar for tractable models
Recursive semantics of probabilistic circuits

X1 X1 X1
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×
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A grammar for tractable models
Recursive semantics of probabilistic circuits

X1 X1 X1

w1 w2

×

X1 X2

×

X1 X2

×

X1 X2

w1 w2

× ×

× ×× ×

X1

X2

X1

X2

X3 X4 X3 X4
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Probabilistic circuits are not PGMs!

They are probabilistic and graphical, however …

PGMs Circuits

Nodes: random variables unit of computations
Edges: dependencies order of execution

Inference: conditioning

elimination

message passing

feedforward pass

backward pass

⇒ they are computational graphs, more like neural networks
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Just sum, products and distributions?

X1

X2

X3

X4

X5

X6

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

just arbitrarily compose them like a neural network!
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Just sum, products and distributions?

X1

X2

X3

X4

X5

X6

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

just arbitrarily compose them like a neural network!
⇒ structural constraints needed for tractability 61/158



Which structural constraints
to ensure tractability?



Decomposability

A product node is decomposable if its children depend on disjoint sets of variables
⇒ just like in factorization!

×

X1 X2 X3

decomposable circuit

×

X1 X1 X3

non-decomposable circuit

Darwiche et al., “A knowledge compilation map”, 2002 63/158



Smoothness
aka completeness

A sum node is smooth if its children depend of the same variable sets
⇒ otherwise not accounting for some variables

X1 X1

w1 w2

smooth circuit

X1 X2

w1 w2

non-smooth circuit

⇒ smoothness can be easily enforced [Shih et al. 2019]

Darwiche et al., “A knowledge compilation map”, 2002 64/158



Smoothness + decomposability = tractable MAR

Computing arbitrary integrations (or summations)
⇒ linear in circuit size!

E.g., suppose we want to compute Z:∫
p(x)dx
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Smoothness + decomposability = tractable MAR

If p(x) =
∑

i wipi(x), (smoothness):

∫
p(x)dx =

∫ ∑
i

wipi(x)dx =

=
∑
i

wi

∫
pi(x)dx

⇒ integrals are “pushed down” to children

× ×

× ×× ×

X1

X2

X1

X2

X3 X4 X3 X4
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Smoothness + decomposability = tractable MAR

If p(x,y, z) = p(x)p(y)p(z), (decomposability):

∫ ∫ ∫
p(x,y, z)dxdydz =

=

∫ ∫ ∫
p(x)p(y)p(z)dxdydz =

=

∫
p(x)dx

∫
p(y)dy

∫
p(z)dz

⇒ integrals decompose into easier ones

× ×

× ×× ×

X1

X2

X1

X2

X3 X4 X3 X4
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Smoothness + decomposability = tractable MAR

Forward pass evaluation for MAR
⇒ linear in circuit size!

E.g. to compute p(x2, x4):

leafs overX1 andX3 outputZi =
∫
p(xi)dxi

⇒ for normalized leaf distributions: 1.0

leafs overX2 andX4 output EVI

feedforward evaluation (bottom-up)

× ×

× ×× ×

X1

X2

X1

X2

X3 X4 X3 X4
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leafs overX1 andX3 outputZi =
∫
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⇒ for normalized leaf distributions: 1.0

leafs overX2 andX4 output EVI

feedforward evaluation (bottom-up)
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Smoothness + decomposability = tractable MAR

Forward pass evaluation for MAR
⇒ linear in circuit size!

E.g. to compute p(x2, x4):

leafs overX1 andX3 outputZi =
∫
p(xi)dxi

⇒ for normalized leaf distributions: 1.0

leafs overX2 andX4 output EVI

feedforward evaluation (bottom-up)

.35 .64

.49

.58 .77

.58 .77.58 .77

1.0

X1

.61

X2

1.0

X1

.83

X2

1.0

X3

.58

X4

1.0

X3

.77

X4
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Smoothness + decomposability = tractable CON

Analogously, for arbitrary conditional queries:

p(q | e) = p(q, e)

p(e)

1. evaluate p(q, e) ⇒ one feedforward pass

2. evaluate p(e) ⇒ another feedforward pass

⇒ …still linear in circuit size!

× ×

× ×× ×

X1

X2

X1

X2

X3 X4 X3 X4

66/158



Tractable MAR : Robotics

Pixels for scenes and abstractions for maps
decompose along circuit structures.

Fast and exact marginalization over unseen
or “do not care” scene and map parts for
hierarchical planning robot executions

Pronobis et al., “Learning Deep Generative Spatial Models for Mobile Robots”, 2016
Pronobis et al., “Deep spatial affordance hierarchy: Spatial knowledge representation for planning
in large-scale environments”, 2017
Zheng et al., “Learning graph-structured sum-product networks for probabilistic semantic maps”,
2018 67/158



Smoothness + decomposability = tractable MAP

We can also decompose bottom-up a MAP query:

argmax
q

p(q | e)
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Smoothness + decomposability = tractable MAP

We cannot decompose bottom-up a MAP query:

argmax
q

p(q | e)

since for a sum node we are marginalizing out a latent variable

argmax
q

∑
i

wipi(q, e) = argmax
q

∑
z

p(q, z, e) ̸=
∑
z

argmax
q

p(q, z, e)

⇒ MAP for latent variable models is intractable [Conaty et al. 2017]
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Determinism
aka selectivity

A sum node is deterministic if the output of only one children is non zero for any input
⇒ e.g. if their distributions have disjoint support

×

X1 ≤ θ X2

×

X1 > θ X2

w1 w2

deterministic circuit

×

X1 X2

×

X1 X2

w1 w2

non-deterministic circuit 70/158



Determinism + decomposability = tractable MAP

Computing maximization with arbitrary evidence e
⇒ linear in circuit size!

E.g., suppose we want to compute:

max
q

p(q | e)

× ×

× ×× ×

X1

X2

X1

X2

X3 X4 X3 X4
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Determinism + decomposability = tractable MAP

If p(q, e) =
∑

i wipi(q, e) = maxi wipi(q, e),
(deterministic sum node):

max
q

p(q, e) = max
q

∑
i

wipi(q, e)

= max
q

max
i

wipi(q, e)

= max
i

max
q

wipi(q, e)

⇒ one non-zero child term, thus sum is max

× ×

× ×× ×

X1

X2

X1

X2

X3 X4 X3 X4
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Determinism + decomposability = tractable MAP

If p(q, e) = p(qx, ex,qy, ey) = p(qx, ex)p(qy, ey)
(decomposable product node):

max
q

p(q | e) = max
q

p(q, e)

= max
qx,qy

p(qx, ex,qy, ey)

= max
qx

p(qx, ex),max
qy

p(qy, ey)

⇒ solving optimization independently

× ×

× ×× ×

X1

X2

X1

X2

X3 X4 X3 X4
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Determinism + decomposability = tractable MAP

Evaluating the circuit twice:
bottom-up and top-down ⇒ still linear in circuit size! × ×

× ×× ×

X1

X2

X1

X2

X3 X4 X3 X4
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Determinism + decomposability = tractable MAP

Evaluating the circuit twice:
bottom-up and top-down ⇒ still linear in circuit size!

E.g., for argmaxx1,x3
p(x1, x3 | x2, x4):

1. turn sum into max nodes and
distributions into max distributions

2. evaluate p(x2, x4) bottom-up

3. retrieve max activations top-down

4. compute MAP states forX1 andX3 at leaves

× ×

max

max max

× ×× ×

X1

X2

X1

X2

X3 X4 X3 X4
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bottom-up and top-down ⇒ still linear in circuit size!
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1. turn sum into max nodes and
distributions into max distributions
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3. retrieve max activations top-down

4. compute MAP states forX1 andX3 at leaves

× ×

max

max max

× ×× ×
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Determinism + decomposability = tractable MAP

Evaluating the circuit twice:
bottom-up and top-down ⇒ still linear in circuit size!

E.g., for argmaxx1,x3
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Determinism + decomposability = tractable MAP

Evaluating the circuit twice:
bottom-up and top-down ⇒ still linear in circuit size!

E.g., for argmaxx1,x3
p(x1, x3 | x2, x4):

1. turn sum into max nodes and
distributions into max distributions

2. evaluate p(x2, x4) bottom-up

3. retrieve max activations top-down

4. compute MAP states forX1 andX3 at leaves
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MAP inference : image segmentation

Semantic segmentation is MAP over joint pixel and label space

Even approximate MAP for non-deterministic circuits (SPNs) delivers good performances.
Rathke et al., “Locally adaptive probabilistic models for global segmentation of pathological oct
scans”, 2017
Yuan et al., “Modeling spatial layout for scene image understanding via a novel multiscale
sum-product network”, 2016
Friesen et al., “Submodular Sum-product Networks for Scene Understanding”, 2016 72/158



Determinism + decomposability = tractable MMAP

Analogously, we could can also do a MMAP query:

argmax
q

∑
z

p(q, z | e)

73/158



Determinism + decomposability = tractable MMAP

We cannot decompose a MMAP query!

argmax
q

∑
z

p(q, z | e)

we still have latent variables to marginalize…

⇒ The final part of this tutorial will talk more about advanced queries and
their tractability properties.
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How expressive are probabilistic circuits?

Measuring average test set log-likelihood on 20 density estimation benchmarks

Comparing against intractable models:

Bayesian networks (BN) [Chickering 2002] with sophisticated context-specific CPDs

MADEs [Germain et al. 2015]

VAEs [Kingma et al. 2014] (IWAE ELBO [Burda et al. 2015])

Gens et al., “Learning the Structure of Sum-Product Networks”, 2013
Peharz et al., “Random sum-product networks: A simple but effective approach to probabilistic
deep learning”, 2019 78/158



How expressive are probabilistic circuits?
density estimation benchmarks

dataset best circuit BN MADE VAE dataset best circuit BN MADE VAE

nltcs -5.99 -6.02 -6.04 -5.99 dna -79.88 -80.65 -82.77 -94.56
msnbc -6.04 -6.04 -6.06 -6.09 kosarek -10.52 -10.83 - -10.64
kdd -2.12 -2.19 -2.07 -2.12 msweb -9.62 -9.70 -9.59 -9.73
plants -11.84 -12.65 -12.32 -12.34 book -33.82 -36.41 -33.95 -33.19
audio -39.39 -40.50 -38.95 -38.67 movie -50.34 -54.37 -48.7 -47.43
jester -51.29 -51.07 -52.23 -51.54 webkb -149.20 -157.43 -149.59 -146.9
netflix -55.71 -57.02 -55.16 -54.73 cr52 -81.87 -87.56 -82.80 -81.33
accidents -26.89 -26.32 -26.42 -29.11 c20ng -151.02 -158.95 -153.18 -146.9
retail -10.72 -10.87 -10.81 -10.83 bbc -229.21 -257.86 -242.40 -240.94
pumbs* -22.15 -21.72 -22.3 -25.16 ad -14.00 -18.35 -13.65 -18.81
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Hybrid intractable + tractable EVI

VAEs as intractable input distributions, orchestrated by a circuit on top

⇒ decomposing a joint ELBO: better lower-bounds than a single VAE
⇒ more expressive efficient and less data hungry

Tan et al., “Hierarchical Decompositional Mixtures of Variational Autoencoders”, 2019 80/158



Learning Probabilistic Circuits



Learning probabilistic circuits

A probabilistic circuit C over variablesX is a computational graph encoding
a (possibly unnormalized) probability distribution p(X) parameterized byΩ
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Learning probabilistic circuits

A probabilistic circuit C over variablesX is a computational graph encoding
a (possibly unnormalized) probability distribution p(X) parameterized byΩ

Learning a circuit C from dataD can therefore involve learning the graph
(structure) and/or its parameters
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Learning probabilistic circuits
Parameters Structure
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Stay tuned for...

Next: 1. How to learn circuit parameters?
⇒ convex optimization, EM, SGD, Bayesian learning, …

2. How to learn the structure of circuits?
⇒ local search, random structures, ensembles, …

After: How circuits are related to other tractable models?
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Learning probabilistic circuits

Probabilistic circuits are (peculiar) neural networks… just backprop with SGD!
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Learning probabilistic circuits

Probabilistic circuits are (peculiar) neural networks… just backprop with SGD!

…end of Learning section!
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Learning probabilistic circuits

Probabilistic circuits are (peculiar) neural networks… just backprop with SGD!

wait but…

SGD is slow to converge…can we do better?

How to learn normalized weights?

Can we exploit structural properties somehow?

85/158



Learning input distributions
As simple as tossing a coin

X1

The simplest PC: a single input distribution pL with parameters θ
⇒ maximum likelihood (ML) estimation over dataD
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Learning input distributions
As simple as tossing a coin

X1

The simplest PC: a single input distribution pL with parameters θ
⇒ maximum likelihood (ML) estimation over dataD

E.g. Bernoulli with parameter θ

θ̂ML =

∑
x∈D 1[x = 1] + α

|D|+ 2α
⇒ Laplace smoothing

86/158



Learning input distributions
General case: still simple

Bernoulli, Gaussian, Dirichlet, Poisson, Gamma are exponential families of the form:

pL(x) = h(x) exp(T (x)Tθ − A(θ))
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Learning input distributions
General case: still simple

Bernoulli, Gaussian, Dirichlet, Poisson, Gamma are exponential families of the form:

pL(x) = h(x) exp(T (x)Tθ − A(θ))

Where:

A(θ) : log-normalizer

h(x) base-measure

T (x) sufficient statistics

θ natural parameters
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Learning input distributions
General case: still simple

Bernoulli, Gaussian, Dirichlet, Poisson, Gamma are exponential families of the form:

pL(x) = h(x) exp(T (x)Tθ − A(θ))

Where:

A(θ) : log-normalizer

h(x) base-measure

T (x) sufficient statistics

θ natural parameters

orϕ expectation parameters — 1:1 mapping with θ⇒θ = θ(ϕ)
87/158



Learning input distributions
General case: still simple

Bernoulli, Gaussian, Dirichlet, Poisson, Gamma are exponential families of the form:

pL(x) = h(x) exp(T (x)Tθ − A(θ))

Maximum likelihood estimation is still “counting”:

ϕ̂ML = ED[T (x)] =
1

|D|
∑
x∈D

T (x)

θ̂ML = θ(ϕ̂ML)

87/158



The simplest “real” PC: a sum node
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X1
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1)

X1 X1

w1 w2

Recall that sum nodes representmixture models:

pS(x) =
K∑
k=1

wkpLk(x)
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The simplest “real” PC: a sum node
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p(
X

1)

X1 X1

w1 w2

Recall that sum nodes represent latent variable models:

pS(x) =
K∑
k=1

p(Z = k)p(x | Z = k)

88/158



Expectation-Maximization (EM)
Learning latent variable models: the EM recipe

Expectation-maximization=maximum-likelihood under missing data.

Given: p(X,Z) whereX observed, Zmissing at random.

θnew ← argmaxθ Ep(Z |X;θold) [log p(X,Z;θ)]
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Expectation-Maximization for mixtures

θnew ← argmaxθ Ep(Z |X;θold) [log p(X, Z;θ)]

ML if Z was observed:

ŵk =

∑
z∈D 1[z = k]

|D|
ϕ̂k =

∑
x,z∈D 1[z = k]T (x)∑

z∈D 1[z = k]

Z is unobserved—but we have p(Z = k |x) ∝ wk Lk(x).

wnew
k =

∑
x∈D p(Z = k |x)

|D|
ϕnew

k =

∑
x,z∈D p(Z = k |x)T (x)∑

z∈D p(Z = k |x)
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Expectation-Maximization for PCs

EM for mixtures well understood.

Mixtures are PCs with 1 sum node.

The general case, PCs with many sum nodes, is similar …

…but a bit more complicated.
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For learning, we need to know
for each sum S:

1. Is S reached (ctx =?)

2. Which child does it select (ZS =?)

We can infer it: p(ctx, ZS |x)



Expectation-Maximization
Tractable MAR (smooth, decomposable)

wnew
i,j ←

∑
x∈D p[ctxi = 1, Zi = j |x;wold]∑

x∈D p[ctxi = 1 |x;wold]

We get all the required statistics with a single backprop pass:

p[ctxi = 1, Zi = j |x;wold] =
1

p(x)

∂p(x)

∂Si(x)
Nj(x)w

old
i,j

Darwiche, “A Differential Approach to Inference in Bayesian Networks”, 2003
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⇒ This also works with missing values in x!
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Tractable MAR (smooth, decomposable)
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p[ctxi = 1, Zi = j |x;wold] =
1
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⇒ Similar updates for leaves, when in exponential family.

Darwiche, “A Differential Approach to Inference in Bayesian Networks”, 2003
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Expectation-Maximization
Tractable MAR (smooth, decomposable)

wnew
i,j ←

∑
x∈D p[ctxi = 1, Zi = j |x;wold]∑

x∈D p[ctxi = 1 |x;wold]

We get all the required statistics with a single backprop pass:

p[ctxi = 1, Zi = j |x;wold] =
1

p(x)

∂p(x)

∂Si(x)
Nj(x)w

old
i,j

⇒ also derivable from a concave-convex procedure (CCCP) [Zhao et al. 2016a]

Darwiche, “A Differential Approach to Inference in Bayesian Networks”, 2003
Peharz et al., “On the Latent Variable Interpretation in Sum-Product Networks”, 2016 94/158
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For each sum node, we know

1. if it is reached (ctx = 1)

2. which child it selects

⇒ MLE by counting!



Exact ML
Tractable MAR/MAP (smooth, decomposable, deterministic)

Given a complete datasetD, the maximum-likelihood sum-weights are:

wML
i,j =

∑
x∈D 1{x |= [i ∧ j]}∑

x∈D 1{x |= [i]}

⇒ global maximum with single pass overD
⇒ regularization, e.g. Laplace-smoothing, to avoid division by zero

⇒ when missing data, fallback to EM

Kisa et al., “Probabilistic sentential decision diagrams”, 2014
Peharz et al., “Learning Selective Sum-Product Networks”, 2014 98/158

← ctxi = 1, Zi = j

← ctxi = 1



Exact ML
Tractable MAR/MAP (smooth, decomposable, deterministic)

Given a complete datasetD, the maximum-likelihood sum-weights are:

wML
i,j =

∑
x∈D 1{x |= [i ∧ j]}∑

x∈D 1{x |= [i]}

⇒ global maximum with single pass overD
⇒ regularization, e.g. Laplace-smoothing, to avoid division by zero

⇒ when missing data, fallback to EM

Kisa et al., “Probabilistic sentential decision diagrams”, 2014
Peharz et al., “Learning Selective Sum-Product Networks”, 2014 98/158

← ctxi = 1, Zi = j

← ctxi = 1



Exact ML
Tractable MAR/MAP (smooth, decomposable, deterministic)

Given a complete datasetD, the maximum-likelihood sum-weights are:

wML
i,j =

∑
x∈D 1{x |= [i ∧ j]}∑

x∈D 1{x |= [i]}

⇒ global maximum with single pass overD
⇒ regularization, e.g. Laplace-smoothing, to avoid division by zero

⇒ when missing data, fallback to EM

Kisa et al., “Probabilistic sentential decision diagrams”, 2014
Peharz et al., “Learning Selective Sum-Product Networks”, 2014 98/158

← ctxi = 1, Zi = j

← ctxi = 1



Exact ML
Tractable MAR/MAP (smooth, decomposable, deterministic)

Given a complete datasetD, the maximum-likelihood sum-weights are:

wML
i,j =

∑
x∈D 1{x |= [i ∧ j]}∑

x∈D 1{x |= [i]}

⇒ global maximum with single pass overD
⇒ regularization, e.g. Laplace-smoothing, to avoid division by zero

⇒ when missing data, fallback to EM

Kisa et al., “Probabilistic sentential decision diagrams”, 2014
Peharz et al., “Learning Selective Sum-Product Networks”, 2014 98/158

← ctxi = 1, Zi = j

← ctxi = 1



Bayesian parameter learning

Formulate a prior p(w,θ) over sum-weights and leaf-parameters and perform posterior
inference:

p(w,θ|D) ∝ p(w,θ) p(D|w,θ)

Moment matching (oBMM) [Jaini et al. 2016; Rashwan et al. 2016]

Collapsed variational inference algorithm [Zhao et al. 2016b]

Gibbs sampling [Trapp et al. 2019; Vergari et al. 2019]

99/158



Learning probabilistic circuits
Parameters Structure

G
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closed-form MLE [Kisa et al. 2014a; Peharz et al. 2014]
non-deterministic
EM [Poon et al. 2011; Peharz 2015; Zhao et al. 2016a]
SGD [Sharir et al. 2016; Peharz et al. 2019a]
Bayesian [Jaini et al. 2016; Rashwan et al. 2016]
[Zhao et al. 2016b; Trapp et al. 2019; Vergari et al. 2019]
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⇒ Continue until no further
leaf can be expanded.
⇒ Clustering ratios also deliver
(initial) parameters.
⇒ Smooth & Decomposable
⇒ Tractable MAR



LearnSPN
Variants

ID-SPN [Rooshenas et al. 2014]

LearnSPN-b/T/B [Vergari et al. 2015]

for heterogeneous data [Molina et al. 2018]

using k-means [Butz et al. 2018] or SVD splits [Adel et al. 2015]

learning DAGs [Dennis et al. 2015; Jaini et al. 2018]

approximating independence tests [Di Mauro et al. 2018]
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Structure Learning + MAP (determinism)
“Recursive conditioning” — Cutset Networks [Rahman et al. 2014]
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Cutset networks (CNets)
Variants

Variable selection based on entropy [Rahman et al. 2014]

Can be extended to mixtures of CNets using EM [ibid.]

Structure search over OR-graphs/CL-trees [Di Mauro et al. 2015a]

Boosted CNets [Rahman et al. 2016]

Randomized CNets, Bagging [Di Mauro et al. 2017]
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Structure learning + MAP (determinism)
Greedy structure search [Peharz2014; Lowd et al. 2008; Liang et al. 2017a]

Structure learning as discrete optimization

Typical objective:

O = logL+ λ|C|,

where logL is log-likelihood using ML-parameters, and |C| the PC’s size (⇔ worst
case inference cost).

Iterate:
1. Start with a simple initial structure.
2. Perform local structure modifications, greedily improvingO
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Randomized structure learning

Extremely Randomized CNets (XCNets) [Di Mauro et al. 2017]

Top-down random conditioning.

Learning Chow-Liu trees at the leaves.

Smooth, decomposable, deterministic.

Random Tensorized SPNs (RAT-SPNs) [Peharz et al. 2019a]

Random tree-shaped PCs.

Discriminative+generative parameter learning (SGD/EM + dropout).

Smooth, decomposable.
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Ensembles of probabilistic circuits

Single circuits might be not accurate enough or overfit training data…
Solution: ensembles of circuits!

⇒ non-deterministic mixture models: another sum node!

p(X) =
K∑
i=1

λiCi(X), λi ≥ 0
K∑
i=1

λi = 1

Ensemble weights and components can be learned separately or jointly

EM or structural EM

bagging

boosting
108/158



Bagging

more efficient than EM

mixture coefficients are set equally probable

mixture components can be learned independently on different bootstraps

Adding random subspace projection to bagged networks (like for CNets)

more efficient than bagging

Di Mauro et al., “Learning Accurate Cutset Networks by Exploiting Decomposability”, 2015
Di Mauro et al., “Learning Bayesian Random Cutset Forests”, 2015 109/158



Boosting

Boosting Probabilistic Circuits

BDE: boosting density estimation
sequentially grows the ensemble, adding a weak base learner at each stage
at each boosting stepm, find a weak learner cm and a coefficient ηm maximizing the
weighted LL of the new model

fm = (1− ηm)fm−1 + ηmcm

GBDE: a kernel based generalization of BDE—AdaBoost style algorithm

sequential EM
at each stepm, jointly optimize ηm and cm keeping fm−1 fixed

Rahman et al., “Learning Ensembles of Cutset Networks”, 2016 110/158



Learning probabilistic circuits
Parameters Structure

G
en

er
at
iv
e deterministic

closed-form MLE [Kisa et al. 2014a; Peharz et al. 2014]
non-deterministic
EM [Poon et al. 2011; Peharz 2015; Zhao et al. 2016a]
SGD [Sharir et al. 2016; Peharz et al. 2019a]
Bayesian [Jaini et al. 2016; Rashwan et al. 2016]
[Zhao et al. 2016b; Trapp et al. 2019; Vergari et al. 2019]

greedy
top-down [Gens et al. 2013; Rooshenas et al. 2014]
[Rahman et al. 2014; Vergari et al. 2015]
bottom-up [Peharz et al. 2013]
hill climbing [Lowd et al. 2008, 2013; Peharz et al. 2014]
[Dennis et al. 2015; Liang et al. 2017a]
random RAT-SPNs [Peharz et al. 2019a] XCNet [Di Mauro et al. 2017]

Di
sc
ri
m
in
at
iv
e

? ?
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EVI inference : density estimation

dataset single models ensembles dataset single models ensembles

nltcs -5.99 [ID-SPN] -5.99 [LearnPSDDs] dna -79.88 [SPGM] -80.07 [SPN-btb]

msnbc -6.04 [Prometheus] -6.04 [LearnPSDDs] kosarek -10.59 [Prometheus] -10.52 [LearnPSDDs]

kdd -2.12 [Prometheus] -2.12 [LearnPSDDs] msweb -9.73 [ID-SPN] -9.62 [XCNets]

plants -12.54 [ID-SPN] -11.84 [XCNets] book -34.14 [ID-SPN] -33.82 [SPN-btb]

audio -39.77 [BNP-SPN] -39.39 [XCNets] movie -51.49 [Prometheus] -50.34 [XCNets]

jester -52.42 [BNP-SPN] -51.29 [LearnPSDDs] webkb -151.84 [ID-SPN] -149.20 [XCNets]

netflix -56.36 [ID-SPN] -55.71 [LearnPSDDs] cr52 -83.35 [ID-SPN] -81.87 [XCNets]

accidents -26.89 [SPGM] -29.10 [XCNets] c20ng -151.47 [ID-SPN] -151.02 [XCNets]

retail -10.85 [ID-SPN] -10.72 [LearnPSDDs] bbc -248.5 [Prometheus] -229.21 [XCNets]

pumbs* -22.15 [SPGM] -22.67 [SPN-btb] ad -15.40 [CNetXD] -14.00 [XCNets]
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Learning probabilistic circuits
Parameters Structure

G
en

er
at
iv
e deterministic

closed-form MLE [Kisa et al. 2014a; Peharz et al. 2014]
non-deterministic
EM [Poon et al. 2011; Peharz 2015; Zhao et al. 2016a]
SGD [Sharir et al. 2016; Peharz et al. 2019a]
Bayesian [Jaini et al. 2016; Rashwan et al. 2016]
[Zhao et al. 2016b; Trapp et al. 2019; Vergari et al. 2019]

greedy
top-down [Gens et al. 2013; Rooshenas et al. 2014]
[Rahman et al. 2014; Vergari et al. 2015]
bottom-up [Peharz et al. 2013]
hill climbing [Lowd et al. 2008, 2013; Peharz et al. 2014]
[Dennis et al. 2015; Liang et al. 2017a]
random RAT-SPNs [Peharz et al. 2019a] XCNet [Di Mauro et al. 2017]

Di
sc
ri
m
in
at
iv
e

deterministic
convex-opt MLE [Liang et al. 2019]
non-deterministic
EM [Rashwan et al. 2018]
SGD [Gens et al. 2012; Sharir et al. 2016]
[Peharz et al. 2019a]

greedy
top-down [Shao et al. 2019]
hill climbing [Rooshenas et al. 2016]
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Representations and theory



Stay tuned for...

Next: 1. How are probabilistic circuits related to logical ones?
⇒ a historical perspective

2. How classical tractable models can be turned in a circuit?
⇒ Compiling low-treewidth PGMs

3. How do PCs in the literature relate and differ?
⇒ SPNs, ACs, CNets, PSDDs

After: More advanced query classes and structural properties!
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Tractability to other semi-rings

Tractable probabilistic inference exploits efficient summation for decomposable
functions in the probability commutative semiring:

(R,+,×, 0, 1)
analogously efficient computations can be done in other semi-rings:

(S,⊕,⊗, 0⊕, 1⊗)
⇒ Algebraic model counting [Kimmig et al. 2017], Semi-ring

programming [Belle et al. 2016]
Historically, very well studied for boolean functions:

(B = {0, 1},∨,∧, 0, 1) ⇒ logical circuits!
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Logical circuits

∧ ∧

∨

X̄4 X̄3

∨ ∨

∧ ∧∧ ∧

X3 X4

X1 X2 X̄1 X̄2

s/d-D/NNFs
[Darwiche et al. 2002a]

O/BDDs
[Bryant 1986]

SDDs
[Darwiche 2011]

Logical circuits are compact representations for boolean functions…
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Logical circuits
structural properties

…and like probabilitistic circuits, one can define structural properties: (structured)
decomposability, smoothness, determinism allowing for tractable computations

Darwiche et al., “A knowledge compilation map”, 2002 118/158



Logical circuits
a knowledge compilation map

…inducing a hierarchy of tractable logical circuit families

Darwiche et al., “A knowledge compilation map”, 2002 119/158



Logical circuits
connection to probabilistic circuits through WMC

A task called weighted model counting (WMC)

WMC(∆, w) =
∑
x|=∆

∏
l∈x

w(l)

Probabilistic inference by WMC:
1. Encode probabilistic model as WMC formula∆
2. Compile∆ into a logical circuit (e.g. d-DNNF, OBDD, SDD, etc.)
3. Tractable MAR/CON by tractable WMC on circuit
4. Answer complex queries tractably by enforcing more structural properties
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Logical circuits
connection to probabilistic circuits through WMC

Resulting compiled WMC circuit equivalent to probabilistic circuit
⇒ parameter variables→ edge parameters

λā λa

×× × ×

θa|c̄θā|c̄ θā|c θa|c θb̄|c̄ θb|c̄

λb̄ λb

×× × ×

θb̄|c θb|c

λc̄ λc

× ×

θc̄ θc

Compiled circuit of WMC encoding

A = ā A = a

θā|c̄ θa|c̄ θā|c θa|c

B = b̄ B = b

θb̄|c̄ θb|c̄ θb̄|c θb|cC = c̄ C = c

× ×

θc̄ θc

Equivalent probabilistic circuit
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From BN trees to circuits
via compilation

D

C

A B

→

A = 0 A = 1 B = 0 B = 1

C = 0 C = 1

× ×

× ×

D = 0 D = 1
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From BN trees to circuits
via compilation

D

C

A B

Bottom-up compilation: starting from leaves…
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From BN trees to circuits
via compilation

D

C

A B

…compile a leaf CPT

A = 0 A = 1

.3 .7

p(A|C = 0)
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From BN trees to circuits
via compilation

D

C

A B

…compile a leaf CPT

A = 0 A = 1

.6 .4

p(A|C = 1)
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From BN trees to circuits
via compilation

D

C

A B

…compile a leaf CPT…for all leaves…

A = 0 A = 1 B = 0 B = 1

p(A|C) p(B|C)

122/158



From BN trees to circuits
via compilation

D

C

A B

…and recurse over parents…

A = 0 A = 1 B = 0 B = 1

C = 0 C = 1

× ×

.2
.8

p(C|D = 0)
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From BN trees to circuits
via compilation

D

C

A B

…while reusing previously compiled nodes!…

A = 0 A = 1 B = 0 B = 1

C = 0 C = 1

× ×

.9

.1

p(C|D = 1)
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From BN trees to circuits
via compilation

D

C

A B
A = 0 A = 1 B = 0 B = 1

C = 0 C = 1

× ×

× ×

D = 0 D = 1

.5 .5

p(D)
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Compilation : probabilistic programming

Chavira et al., “Compiling relational Bayesian networks for exact inference”, 2006
Holtzen et al., “Symbolic Exact Inference for Discrete Probabilistic Programs”, 2019
De Raedt et al.; Riguzzi; Fierens et al.; Vlasselaer et al., “ProbLog: A Probabilistic Prolog and Its
Application in Link Discovery.”; “A top down interpreter for LPAD and CP-logic”; “Inference and
Learning in Probabilistic Logic Programs using Weighted Boolean Formulas”; “Anytime Inference in
Probabilistic Logic Programs with Tp-compilation”, 2007; 2007; 2015; 2015
Olteanu et al.; Van den Broeck et al., “Using OBDDs for efficient query evaluation on probabilistic
databases”; Query Processing on Probabilistic Data: A Survey, 2008; 2017
Vlasselaer et al., “Exploiting Local and Repeated Structure in Dynamic Bayesian Networks”, 2016 123/158



Low-treewidh PGMs

Tree, polytrees and
Thin Junction trees
can be turned into

decomposable

smooth

deterministic

circuits

Therefore they support
tractable

EVI

MAR/CON

MAP

D

C

A B
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Arithmetic Circuits (ACs)

ACs [Darwiche 2003] are

decomposable

smooth

deterministic

They support tractable

EVI

MAR/CON

MAP

⇒ parameters are attached to the leaves
⇒ …but can be moved to the sum node edges [Rooshenas et al. 2014]

Lowd et al., “Learning Markov Networks With Arithmetic Circuits”, 2013 125/158



Sum-Product Networks (SPNs)

SPNs [Poon et al. 2011] are

decomposable

smooth

deterministic

They support tractable

EVI

MAR/CON

MAP

× ×

× ×× ×

X3 X4

X1 X2 X1 X2

0.3 0.7

0.5 0.5 0.9 0.1

⇒ deterministic SPNs are also called selective [Peharz et al. 2014]
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Cutset Networks (CNets)

CNets
[Rahman et al. 2014] are

decomposable

smooth

deterministic

They support tractable

EVI

MAR/CON

MAP

X1

X2 X3

C1

C2 C3
0.4 0.6

X4X5

X6 X3

0.7

X5X6

X4 X2

0.8

X5X4

X6 X2

0.2

X3X6

X5 X4

0.3

Rahman et al., “Cutset Networks: A Simple, Tractable, and Scalable Approach for Improving the
Accuracy of Chow-Liu Trees”, 2014
Di Mauro et al., “Learning Accurate Cutset Networks by Exploiting Decomposability”, 2015 127/158



Probabilistic Sentential Decision Diagrams

PSDDs [Kisa et al. 2014b] are

structured
decomposable

smooth

deterministic

They support tractable

EVI

MAR/CON

MAP

Complex queries!

Kisa et al., “Probabilistic sentential decision diagrams”, 2014
Choi et al., “Tractable learning for structured probability spaces: A case study in learning
preference distributions”, 2015
Shen et al., “Conditional PSDDs: Modeling and learning with modular knowledge”, 2018 128/158



AndOrGraphs

AndOrGarphs
[Dechter et al. 2007] are

structured
decomposable

smooth

deterministic

They support tractable

EVI

MAR/CON

MAP

Complex queries!

Dechter et al., “AND/OR search spaces for graphical models”, 2007
Marinescu et al., “Best-first AND/OR search for 0/1 integer programming”, 2007 129/158



Smooth ∨ decomposable ∨ deterministic
∨ structured decomposable PCs?

smooth dec. det. str.dec.

Arithmetic Circuits (ACs) [Darwiche 2003] 4 4 4 8
Sum-Product Networks (SPNs) [Poon et al. 2011] 4 4 8 8

Cutset Networks (CNets) [Rahman et al. 2014] 4 4 4 8
PSDDs [Kisa et al. 2014b] 4 4 4 4

AndOrGraphs [Dechter et al. 2007] 4 4 4 4
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Structured decomposability

A product node is structured decomposable if decomposes according to a node in a vtree
⇒ stronger requirement than decomposability

X3

X1 X2

vtree

×

X1 X2

×

X1 X2

X3

×

×

X1 X2

×

X1 X2

X3

×

structured decomposable circuit
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Structured decomposability

A product node is structured decomposable if decomposes according to a node in a vtree
⇒ stronger requirement than decomposability

X3

X1 X2

vtree

×

X1 X3

×

X1 X3

X2

×

×

X1 X2

×

X1 X2

X3

×

non structured decomposable circuit
131/158



Probability of logical events

q8: What is the probability of having a traffic jam on
my route to work?

© fineartamerica.com
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Probability of logical events

q8: What is the probability of having a traffic jam on
my route to work?

q8(m) = pm(
∨

i∈route JamStr i)

⇒ marginals + logical events

© fineartamerica.com

132/158
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Smoothness + structured decomp. = tractable PR

Computing p(α): the probability of arbitrary
logical formula

Multilinear in circuit sizes if the logical circuit:

is smooth, structured decomposable,
deterministic

shares the same vtree

× ×

× ×

X3 X3

X1X2 X2 X1

X3

∧

∨

∨

∧ ∧

X1 > 0.6 ¬X2 X1 ≤ 0.3
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Smoothness + structured decomp. = tractable PR

If p(x) =
∑

i wipi(x),α =
∨

j αj ,
(smooth p)
(smooth + deterministicα):

p(α) =
∑
i

wipi

∨
j

αj

 =
∑
i

wi

∑
j

pi (αj)

⇒ probabilities are “pushed down” to
children

× ×

× ×

X3 X3

X1X2 X2 X1

X3

∧

∨

∨

∧ ∧

X1 > 0.6 ¬X2 X1 ≤ 0.3
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Smoothness + structured decomp. = tractable PR

If p(x,y) = p(x)p(y),α = β ∧ γ ,
(structured decomposability):

p(α) = p (β ∧ γ) · p (β ∧ γ) = p (β) · p (γ)

⇒ probabilities decompose into simpler
ones

× ×

× ×
X3 X3

X1X2 X2 X1

X3

∧

∨

∨

∧ ∧

X1 > 0.6 ¬X2 X1 ≤ 0.3
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Smoothness + structured decomp. = tractable PR

To compute p(α):

compute the probability for each pair of
probabilistic and logical circuit nodes for
the same vtree node

⇒ cache the values!

feedforward evaluation (bottom-up)

× ×

× ×

X3 X3

X1X2 X2 X1

X3

∧

∨

∨

∧ ∧

X1 > 0.6 ¬X2 X1 ≤ 0.3
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To compute p(α):
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⇒ cache the values!

feedforward evaluation (bottom-up)

× ×

× ×

X3 X3

X1X2 X2 X1

X3

∧

∨

∨
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X1 > 0.6 ¬X2 X1 ≤ 0.3
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ADV inference : preference learning

Preferences and rankings as logical
constraints

Structured decomposable circuits for
inference over structured spaces

SOTA on modeling densities over rankings

Choi et al., “Tractable learning for structured probability spaces: A case study in learning
preference distributions”, 2015
Shen et al., “A Tractable Probabilistic Model for Subset Selection.”, 2017 134/158



structured decomposability = tractable…
Symmetric and group queries (exactly-k, odd-number, etc.) [Bekker et al. 2015]

For the “right” vtree

Probability of logical circuit event in probabilistic circuit [Choi et al. 2015b]

Multiply two probabilistic circuits [Shen et al. 2016]

KL Divergence between probabilistic circuits [Liang et al. 2017b]

Same-decision probability [Oztok et al. 2016]

Expected same-decision probability [Choi et al. 2017]

Expected classifier agreement [Choi et al. 2018]

Expected predictions [Khosravi et al. 2019c]
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ADV inference : expected predictions

Reasoning about the output of a classifier or regressor f given
a distribution p over the input features

⇒ missing values at test time
⇒ exploratory classifier analysis

E
xm∼pθ(xm|xo)

[
fk
ϕ (x

m,xo)
]

Closed form moments for f and p as structured decomposable
circuits with same v-tree

Khosravi et al., “On Tractable Computation of Expected Predictions”, 2019 136/158



Stay tuned for...

Next: 1. How precise is the characterization of tractable circuits by
structural properties? ⇒ necessary conditions

2. How do structural constraints affect the circuit sizes?
⇒ succinctness analysis

After: Conclusions!
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Smoothness + decomposability = tractable MAR

Recall: Smoothness and decomposability are sufficient conditions for partial
evidence evaluation of a circuit to compute marginals.

× ×

× ×× ×

X1

X2

X1

X2

X3 X4 X3 X4

× ×

× ×× ×

1.0

X1

.61

X2

1.0

X1

.83

X2

1.0

X3

.58

X4

1.0

X3

.77

X4

.35 .64

.49

.58 .77

.58 .77.58 .77

1.0

X1

.61

X2

1.0

X1

.83

X2

1.0

X3

.58

X4

1.0

X3

.77

X4
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Smoothness + decomposability = tractable MAR

Smoothness and decomposability are necessary and sufficient conditions for
partial evidence evaluation of a circuit to compute marginals.

Non-smooth node⇒ a variable is unaccounted for⇒missing integrals.

Non-decomposable node⇒ integral does not decompose.
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Smoothness + decomposability = tractable MAR
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Smoothness + decomposability = tractable MAR

Smoothness and decomposability are necessary and sufficient conditions for
partial evidence evaluation of a circuit to compute marginals.

Non-smooth node⇒ a variable is unaccounted for⇒missing integrals.

Non-decomposable node⇒ integral does not decompose.
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Determinism + decomposability = tractable MAP

Recall: Determinism and decomposability are sufficient conditions for
maximizer circuit evaluation to compute MAP.

× ×

× ×× ×

X1

X2

X1

X2

X3 X4 X3 X4

× ×

max

max max

× ×× ×

.66

X1

.61

X2

.2

X1

.83

X2

1.2

X3

.58

X4

1.8

X3

.77

X4

.35 .64

.49

.58 .77

.58 .77.58 .77

.66

X1

.61

X2

.2

X1

.83

X2

1.2

X3

.58

X4

1.8

X3

.77

X4
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Determinism + decomposability = tractable MAP

Recall: Determinism and decomposability are sufficient conditions for
maximizer circuit evaluation to compute MAP.

Decomposability is not necessary!
⇒ A weaker condition, consistency, suffices.

140/158



Consistency

A product node is consistent if any variable shared between its children appears in a
single leaf node

⇒ decomposability implies consistency

X1 X2 X3

×

w1 w2 w3 w4

consistent circuit

X1 X2 ≤ θ X2 > θ X3

×

w1 w2 w3 w4

inconsistent circuit 141/158



Determinism + consistency = tractable MAP

142/158



Determinism + consistency = tractable MAP

Ifmaxqshared p(q, e) =
maxqshared p(qx, ex) ·maxqshared p(qy, ey) (consistent):

max
q

p(q, e) = max
qx,qy

p(qx, ex,qy, ey)

= max
qx

p(qx, ex) ·max
qy

p(qy, ey)

⇒ solving optimization independently

× ×

× ×× ×

X1

X2

X1

X2

X3 X4 X3 X4
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Determinism + consistency = tractable MAP

Determinism and consistency are necessary and sufficient conditions for
maximizer circuit evaluation to compute MAP.

Non-deterministic node⇒ cannot maximize correctly without
summations.

Inconsistent node⇒ MAP assignments of children conflict with each
other.
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Determinism + consistency = tractable MAP

Determinism and consistency are necessary and sufficient conditions for
maximizer circuit evaluation to compute MAP.

Non-deterministic node⇒ cannot maximize correctly without
summations.

Inconsistent node⇒ MAP assignments of children conflict with each
other.
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Expressive efficiency of circuits

Tractability is defined w.r.t. the size of the model.

How do structural constraints affect expressive efficiency (succinctness) of
probabilistic circuits?

⇒ Again, connections to logical circuits
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Expressive efficiency of circuits

A family of probabilistic circuitsM1 is at least as succinct asM2

iff for everym2 ∈M2, there existsm1 ∈M1 that represents

the same distribution and |m1| ≤ |poly(m2)|.
⇒ denotedM1 ≤M2

⇒ strictly more succinct iffM1 ≤M2 andM1 ̸≥ M2
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Expressive efficiency of circuits

smooth & Decomp.

MAR

det. & cons.

MAP

?

Are smooth&decomposable circuits as
succinct as deterministic & consistent ones,
or vice versa?
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Expressive efficiency of circuits

smooth & Decomp.

MAR

det. & cons.

MAP

? det. & Decomp.

[Darwiche et al. 2002b]

: strictly more succinct

Smooth&decomposable circuits strictly
more succinct than
deterministic&decomposable ones

Smooth&consistent circuits are equally
succinct as smooth&decomposable ones

146/158



Expressive efficiency of circuits

smooth & Decomp.

MAR

det. & cons.

MAP

? det. & Decomp.

[Darwiche et al. 2002b]

: strictly more succinct

smooth & cons.

[Peharz et al. 2015]*

: equally succinct

Smooth&decomposable circuits strictly
more succinct than
deterministic&decomposable ones

Smooth&consistent circuits are equally
succinct as smooth&decomposable ones

146/158



Expressive efficiency of circuits

smooth & Decomp.

MAR

det. & cons.

MAP

? det. & Decomp.

[Darwiche et al. 2002b]

: strictly more succinct

smooth & cons.

[Peharz et al. 2015]*

: equally succinct

?
≤

Smooth&decomposable circuits strictly
more succinct than
deterministic&decomposable ones

Smooth&consistent circuits are equally
succinct as smooth&decomposable ones

146/158



Expressive efficiency of circuits

smooth & Decomp.

MAR

det. & cons.

MAP

? det. & Decomp.

[Darwiche et al. 2002b]

: strictly more succinct

smooth & cons.

[Peharz et al. 2015]*

: equally succinct

?
≤

Consider following circuit over Boolean variables:∏r
i (Yi · Zi1 + (¬Yi) · Zi2), Zij ∈ X

Size linear in the number of variables

Deterministic and consistent

Marginal (with no evidence) is the solution
to #P-hard SAT′ problem [Valiant 1979]⇒
no tractable circuit for marginals!

146/158



Expressive efficiency of circuits

smooth & Decomp.

MAR

det. & cons.

MAP

? det. & Decomp.

[Darwiche et al. 2002b]

: strictly more succinct

smooth & cons.

[Peharz et al. 2015]*

: equally succinct

?
≤

Consider following circuit over Boolean variables:∏r
i (Yi · Zi1 + (¬Yi) · Zi2), Zij ∈ X

Size linear in the number of variables

Deterministic and consistent

Marginal (with no evidence) is the solution
to #P-hard SAT′ problem [Valiant 1979]⇒
no tractable circuit for marginals!

146/158



Expressive efficiency of circuits

smooth & Decomp.

MAR

det. & cons.

MAP

? det. & Decomp.

[Darwiche et al. 2002b]

: strictly more succinct

smooth & cons.

[Peharz et al. 2015]*

: equally succinct

?
≤

Consider following circuit over Boolean variables:∏r
i (Yi · Zi1 + (¬Yi) · Zi2), Zij ∈ X

Size linear in the number of variables

Deterministic and consistent

Marginal (with no evidence) is the solution
to #P-hard SAT′ problem [Valiant 1979]⇒
no tractable circuit for marginals!

146/158



Expressive efficiency of circuits

smooth & Decomp.

MAR

det. & cons.

MAP

? det. & Decomp.

[Darwiche et al. 2002b]

: strictly more succinct

smooth & cons.

[Peharz et al. 2015]*

: equally succinct

?
≤

Consider following circuit over Boolean variables:∏r
i (Yi · Zi1 + (¬Yi) · Zi2), Zij ∈ X

Size linear in the number of variables

Deterministic and consistent

Marginal (with no evidence) is the solution
to #P-hard SAT′ problem [Valiant 1979]⇒
no tractable circuit for marginals!

146/158



Expressive efficiency of circuits

smooth & Decomp.

MAR

det. & cons.

MAP

det. & Decomp.

[Darwiche et al. 2002b]

: strictly more succinct

smooth & cons.

[Peharz et al. 2015]*

: equally succinct

̸≤

̸≤
≤,
̸≥

Consider following circuit over Boolean variables:∏r
i (Yi · Zi1 + (¬Yi) · Zi2), Zij ∈ X

Size linear in the number of variables

Deterministic and consistent

Marginal (with no evidence) is the solution
to #P-hard SAT′ problem [Valiant 1979]⇒
no tractable circuit for marginals!

146/158



Expressive efficiency of circuits

smooth & Decomp.

MAR

det. & cons.

MAP

det. & Decomp.

[Darwiche et al. 2002b]

: strictly more succinct

smooth & cons.

[Peharz et al. 2015]*

: equally succinct

̸≤

̸≤

Consider following circuit over Boolean variables:∏r
i (Yi · Zi1 + (¬Yi) · Zi2), Zij ∈ X

Size linear in the number of variables

Deterministic and consistent

Marginal (with no evidence) is the solution
to #P-hard SAT′ problem [Valiant 1979]⇒
no tractable circuit for marginals!

146/158



Expressive efficiency of circuits

smooth & Decomp.

MAR

det. & cons.

MAP

det. & Decomp.

[Darwiche et al. 2002b]

: strictly more succinct

smooth & cons.

[Peharz et al. 2015]*

: equally succinct

̸≤

̸≤

Consider the marginal distribution p(X) from a
naive Bayes distribution p(X, C):

Linear-size smooth and decomposable
circuit

MAP of p(X) solves marginal MAP of
p(X, C) which is NP-hard [de Campos 2011]

⇒ no tractable circuit for MAP!
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Conclusions



Why tractable inference?
or expressiveness vs tractability

Probabilistic circuits
a unified framework for tractable probabilistic modeling

Learning circuits
learning their structure and parameters from data

Representations and theory
tracing the boundaries of tractability and connections to other formalisms
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takeaway #1: tractability is a spectrum
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takeaway #2: you can be both tractable and expressive
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X1 X2 X3 X1 X1

w1 w2
×

X1 ≤ θ X2

×

X1 > θ X2

w1 w2

takeaway #3: probabilistic circuits are a foundation for
tractable inference and learning
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Challenge #1
hybridizing tractable and intractable models

Hybridize probabilistic inference:
tractable models inside intractable loops
and intractable small boxes glued by tractable inference!
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Challenge #2
scaling tractable learning

Learn tractable models
onmillions of datapoints
and thousands of features
in tractable time!
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Challenge #3
deep theoretical understanding

Trace a precise picture
of the whole tractabile spectrum
and complete the map of succintness!
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Challenge #4
advanced and automated reasoning

Move beyond single probabilistic queries
towards fully automated reasoning!
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Readings

Probabilistic circuits: Representation and Learning
starai.cs.ucla.edu/papers/LecNoAAAI20.pdf

Foundations of Sum-Product Networks for probabilistic modeling
tinyurl.com/w65po5d

Slides for this tutorial
starai.cs.ucla.edu/slides/AAAI20.pdf
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Code

Juice.jl advanced logical+probabilistic inference with circuits in Julia
github.com/Juice-jl/ProbabilisticCircuits.jl

SumProductNetworks.jl SPN routines in Julia
github.com/trappmartin/SumProductNetworks.jl
SPFlow easy and extensible python library for SPNs
github.com/SPFlow/SPFlow
Libra several structure learning algorithms in OCaml
libra.cs.uoregon.edu

More refs ⇒ github.com/arranger1044/awesome-spn
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