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Why tractable inference?
or expressiveness vs tractability

Probabilistic circuits
a unified framework for tractable models

Building circuits
learning them from data and compiling other models
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Why tractable inference?
or the inherent trade-off of tractability vs. expressiveness



Complete evidence (EVI)

X = {Day,Time, JamAlma, JamStr2, . . . , JamStrN}
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Complete evidence (EVI)

X = {Day,Time, JamAlma, JamStr2, . . . , JamStrN}

q1: What is the probability that today is a Monday at
12.00 and there is a traffic jam only on Alma Str.?

q1(m) = pm(X = {Mon, 12.00, 1, 0, . . . , 0})

…fundamental inmaximum likelihood learning

θMLE
m = argmaxθ

∏
x∈D pm(x; θ) © fineartamerica.com
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Marginal queries (MAR)

q2: What is the probability that today is a Monday at
12.00 and there is a traffic jam only on Alma Str.?

© fineartamerica.com

5/52

fineartamerica.com


Marginal queries (MAR)

q2: What is the probability that today is a Monday at
12.00 and there is a traffic jam only on Alma Str.?

q2(m) = pm(Day = Mon, JamAlma = 1)

© fineartamerica.com

5/52

fineartamerica.com


Marginal queries (MAR)

q2: What is the probability that today is a Monday at
12.00 and there is a traffic jam only on Alma Str.?

q2(m) = pm(Day = Mon, JamAlma = 1)

General: pm(e) =
∫
pm(e,H) dH

where E ⊂ X, H = X \ E
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Marginal queries (MAR)

q2: What is the probability that today is a Monday at
12.00 and there is a traffic jam only on Alma Str.?

q2(m) = pm(Day = Mon, JamAlma = 1)

General: pm(e) =
∫
pm(e,H) dH

and if you can answer MAR queries,
then you can also do conditional queries (CON):

pm(q | e) = pm(q, e)

pm(e)

© fineartamerica.com
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Maximum A Posteriori (MAP)
aka Most Probable Explanation (MPE)

q3: Which combination of roads is
most likely to be jammed on
Monday at 9am?
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Maximum A Posteriori (MAP)
aka Most Probable Explanation (MPE)

q3: Which combination of roads is
most likely to be jammed on
Monday at 9am?

q3(m) = argmaxj pm(j1, j2, . . . | Day=M,Time=9)
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Maximum A Posteriori (MAP)
aka Most Probable Explanation (MPE)

q3: Which combination of roads is
most likely to be jammed on
Monday at 9am?

q3(m) = argmaxj pm(j1, j2, . . . | Day=M,Time=9)

General: argmaxq pm(q | e)

where Q ∪ E = X

© fineartamerica.com
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Tractable Probabilistic Inference

A class of queriesQ is tractable on a family of probabilistic modelsM
iff for any query q ∈ Q and modelm ∈ M
exactly computing q(m) runs in timeO(poly(|m|)).
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Fully factorized models

A completely disconnected graph. Example: Product of Bernoullis (PoBs)

X1

X2

X3

X4

X5

p(x) =
∏n

i=1
p(xi)

Complete evidence, marginals and MAP, MMAP inference is linear!
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What do we lose?

Expressiveness: Ability to represent rich and complex classes of distributions

X1

X2

X3

X4

X5

Fully factorized models cannot represent all possible distributions.
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Probabilistic Graphical Models (PGMs)

Declarative semantics: a clean separation of modeling assumptions from inference

Nodes: random variables
Edges: dependencies

+

Inference: conditioning [Darwiche 2001; Sang et al. 2005]

elimination [Zhang et al. 1994; Dechter 1998]

message passing [Yedidia et al. 2001; Dechter

et al. 2002; Choi et al. 2010; Sontag et al. 2011]

X1

X2

X3

X4

X5
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Complexity of MAR on PGMs

Exact complexity: Computing MAR is #P-complete [Cooper 1990; Roth 1996]
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et al. 2009].
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Complexity of MAR on PGMs

Exact complexity: Computing MAR is #P-complete [Cooper 1990; Roth 1996]

Fixed-parameter tractable: MAR on a graphical model with treewidthw
takes timeO(|X| · 2w), which is linear for fixed widthw [Dechter 1998; Koller

et al. 2009].

⇒ what about bounding the treewidth by design?

⇒ Bounded-treewidth PGMs cannot represent all possible distributions.
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Summary so far…

EVI MAR MAP expressive

Fully-factorized 4 4 4 8
Bounded-treewidth PGMs 4 4 4 8

PGMs 4* 8 8 4
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Mixtures

Mixtures as a convex combination of k (simpler) probabilistic models

−10 −5 0 5 10

X1

0.00

0.05

0.10

0.15

0.20

0.25

p(
X

1)

p(X) = w1 · p1(X) + w2 · p2(X)

EVI, MAR, CON queries scale linearly in k
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Mixtures

Mixtures as a convex combination of k (simpler) probabilistic models

−10 −5 0 5 10

X1

0.00

0.05

0.10

0.15

0.20

0.25

p(
X

1)

p(X) = w1 · p1(X) + w2 · p2(X)

EVI, MAR, CON queries scale linearly in k

…MAP is intractable!

max
q

pm(q | e) = max
q

∑
i

wipi(q | e)

̸=
∑
i

wimax
q

pi(q | e)
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Expressiveness and efficiency

Expressiveness: Ability to represent rich and effective classes of functions

⇒ mixture of Gaussians can approximate any distribution!

Cohen et al., “On the expressive power of deep learning: A tensor analysis”, 2016
Martens et al., “On the Expressive Efficiency of Sum Product Networks”, 2014 14/52



Expressiveness and efficiency

Expressiveness: Ability to represent rich and effective classes of functions

⇒ mixture of Gaussians can approximate any distribution!

Expressive efficiency (succinctness): Ability to represent rich and effective classes of
functions compactly

⇒ but how many components does a Gaussian mixture need?

Cohen et al., “On the expressive power of deep learning: A tensor analysis”, 2016
Martens et al., “On the Expressive Efficiency of Sum Product Networks”, 2014 14/52



How expressive efficient are mixture?
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Summary so far…

EVI MAR MAP expressive expr.efficient

Fully-factorized 4 4 4 8 8
Bounded-treewidth PGMs 4 4 4 8 8

PGMs 4* 8 8 4 4
Mixtures 4 4 8 4 8
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BNs

NFs

NADEs

MNs
VAEs

GANs

Expressive models are not very tractable…
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less tractable queries

BNs

NFs

NADEs

MNs
VAEs

GANs

Fully factorized

NB
Trees

Polytrees
TJT

LTM

Mixtures

X

probabilistic circuits are at the “sweet spot”
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Probabilistic Circuits



Stay tuned for...

Next: 1. What are the building blocks of probabilistic circuits?
⇒ How to build a tractable computational graph?

2. For which queries are probabilistic circuits tractable?
⇒ tractable classes induced by structural properties

After: How do you build a probabilistic circuit?
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Base case: Univariate distributions

¬X

A single node encoding a distribution
⇒ e.g., indicators forX or ¬X for Boolean random variable
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Base case: Univariate distributions

x

X

pX(x)

A single node encoding a distribution
⇒ e.g., indicators forX or ¬X for Boolean random variable

⇒ More generally, PDFs for continuous random variable

23/52



Base case: Univariate distributions

1.3

X

.33

A single node encoding a distribution
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Base case: Univariate distributions

1.3

X

.33

A single node encoding a distribution
⇒ e.g., indicators forX or ¬X for Boolean random variable

⇒ More generally, PDFs for continuous random variable

Assumption: tractable for EVI,MAR,MAP

23/52



Factorizations as product nodes
Divide and conquer complexity

p(X1, X2, X3) = p(X1) · p(X2) · p(X3)
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X1 X2 X3
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Factorizations as product nodes
Divide and conquer complexity

p(x1, x2, x3) = p(x1) · p(x2) · p(x3)

×

0.8

X1

0.5

X2

0.9

X3

⇒ feedforward evaluation 24/52



Factorizations as product nodes
Divide and conquer complexity

p(x1, x2, x3) = p(x1) · p(x2) · p(x3)

.36

0.8

X1

0.5

X2

0.9

X3

⇒ feedforward evaluation 24/52



Mixtures as sum nodes
Enhance expressiveness
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p(X) = w1·p1(X)+w2·p2(X)
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Mixtures as sum nodes
Enhance expressiveness

X1 X1

w1 w2

p(x) = 0.2·p1(x)+0.8·p2(x)
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Mixtures as sum nodes
Enhance expressiveness

.44

0.2

X1

0.5

X1

0.2 0.8

p(x) = 0.2·p1(x)+0.8·p2(x)

⇒ by stacking them we increase expressive efficiency
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A grammar for tractable models
Recursive semantics of probabilistic circuits

X1
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A grammar for tractable models
Recursive semantics of probabilistic circuits

X1 X1 X1

w1 w2

×

X1 X2

×

X1 X2

×

X1 X2

w1 w2

× ×

× ×× ×

X1

X2

X1

X2

X3 X4 X3 X4
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Logical circuits
connection to probabilistic circuits through WMC

λā λa

×× × ×

θa|c̄θā|c̄ θā|c θa|c θb̄|c̄ θb|c̄

λb̄ λb

×× × ×

θb̄|c θb|c

λc̄ λc

× ×

θc̄ θc

Compiled circuit of WMC encoding

A = ā A = a

θā|c̄ θa|c̄ θā|c θa|c

B = b̄ B = b

θb̄|c̄ θb|c̄ θb̄|c θb|cC = c̄ C = c

× ×

θc̄ θc

Equivalent probabilistic circuit
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Which structural constraints
to ensure tractability?



Decomposability

A product node is decomposable if its children depend on disjoint sets of variables
⇒ just like in factorization!

×

X1 X2 X3

decomposable circuit

×

X1 X1 X3

non-decomposable circuit

Darwiche et al., “A knowledge compilation map”, 2002 29/52



Smoothness
aka completeness

A sum node is smooth if its children depend of the same variable sets
⇒ otherwise not accounting for some variables

X1 X1

w1 w2

smooth circuit

X1 X2

w1 w2

non-smooth circuit

Darwiche et al., “A knowledge compilation map”, 2002 30/52



Smoothness + decomposability = tractable MAR
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Smoothness + decomposability = tractable MAR

If p(x) =
∑

i wipi(x), (smoothness):

∫
p(x)dx =

∫ ∑
i

wipi(x)dx =

=
∑
i

wi

∫
pi(x)dx

⇒ integrals are “pushed down” to children

× ×

× ×× ×

X1

X2

X1

X2

X3 X4 X3 X4
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Smoothness + decomposability = tractable MAR

If p(x,y, z) = p(x)p(y)p(z), (decomposability):

∫ ∫ ∫
p(x,y, z)dxdydz =

=

∫ ∫ ∫
p(x)p(y)p(z)dxdydz =

=

∫
p(x)dx

∫
p(y)dy

∫
p(z)dz

⇒ integrals decompose into easier ones

× ×

× ×× ×

X1

X2

X1

X2

X3 X4 X3 X4
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Smoothness + decomposability = tractable MAR

To compute p(x2, x4):

leaves overX1 andX3 output
Zi =

∫
p(xi)dxi

⇒ for normalized leaf distributions: 1.0

leaves overX2 andX4 output EVI

feedforward evaluation (bottom-up)

× ×

× ×× ×

X1

X2

X1

X2

X3 X4 X3 X4
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⇒ for normalized leaf distributions: 1.0

leaves overX2 andX4 output EVI

feedforward evaluation (bottom-up)
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× ×× ×
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.83
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X3
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Smoothness + decomposability = tractable MAR

To compute p(x2, x4):

leaves overX1 andX3 output
Zi =

∫
p(xi)dxi

⇒ for normalized leaf distributions: 1.0

leaves overX2 andX4 output EVI

feedforward evaluation (bottom-up)

.35 .64

.49

.58 .77

.58 .77.58 .77

1.0

X1

.61

X2

1.0

X1

.83

X2

1.0

X3

.58

X4

1.0

X3

.77

X4
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Smoothness + decomposability = tractable MAR

Smoothness and decomposability are sufficient conditions for a circuit to
compute marginals.
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Smoothness + decomposability = tractable MAR

Smoothness and decomposability are necessary and sufficient conditions for
a circuit to compute marginals.

Non-smooth node⇒ a variable is unaccounted for⇒ lower-bounds the marginal

Non-decomposable node⇒ integral does not decompose.
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Smoothness + decomposability = tractable MAR

Smoothness and decomposability are necessary and sufficient conditions for
a circuit to compute marginals.

Non-smooth node⇒ a variable is unaccounted for⇒ lower-bounds the marginal

Non-decomposable node⇒ integral does not decompose.
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Determinism
aka selectivity

A sum node is deterministic if the output of only one children is non zero for any input
⇒ e.g. if their distributions have disjoint support

×

X1 ≤ θ X2

×

X1 > θ X2

w1 w2

deterministic circuit

×

X1 X2

×

X1 X2

w1 w2

non-deterministic circuit 32/52



Consistency

A product node is consistent if any variable shared between its children appears in a
single leaf node

⇒ decomposability implies consistency

X1 X2 X3

×

w1 w2 w3 w4

consistent circuit

X1 X2 ≤ θ X2 > θ X3

×

w1 w2 w3 w4

inconsistent circuit 33/52



Determinism + consistency = tractable MAP
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Determinism + consistency = tractable MAP

If p(q, e) =
∑

i wipi(q, e) = maxi wipi(q, e),
(determinism):

max
q

p(q, e) = max
q

∑
i

wipi(q, e)

= max
q

max
i

wipi(q, e)

= max
i

max
q

wipi(q, e)

⇒ one non-zero child term, thus sum is max

× ×

× ×× ×

X1

X2

X1

X2

X3 X4 X3 X4

34/52



Determinism + consistency = tractable MAP

Ifmaxqshared p(q, e) =
maxqshared p(qx, ex) ·maxqshared p(qy, ey) (consistent):

max
q

p(q, e) = max
qx,qy

p(qx, ex,qy, ey)

= max
qx

p(qx, ex) ·max
qy

p(qy, ey)

⇒ solving optimization independently

× ×

× ×× ×

X1

X2

X1

X2

X3 X4 X3 X4
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Determinism + consistency = tractable MAP

To computemaxx1,x3 p(x1, x2, x3, x4):

turn sum into max nodes

leaves overX1 andX3 outputM i = max p(xi)

leaves overX2 andX4 output EVI

feedforward evaluation (bottom-up)

× ×

× ×× ×
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X1

X2

X3 X4 X3 X4
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max

max max

× ×× ×
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Determinism + consistency = tractable MAP

Determinism and consistency are sufficient conditions for a circuit to
compute MAP.
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Determinism and consistency are necessary and sufficient conditions for a
circuit to compute MAP.

Non-deterministic node⇒ cannot maximize correctly without summations.

Inconsistent node⇒MAP assignments of children conflict with each other.
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Succinctness of circuits

smooth & Decomp.

det. & cons.

?

Are smooth & decomposable circuits as suc-
cinct as deterministic & consistent ones, or vice
versa?
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: strictly more succinct

smooth & cons.

[Peharz et al. 2015]

: equally succinct

?
≤

Consider following circuit over Boolean variables:∏r
i (Yi · Zi1 + (¬Yi) · Zi2), Zij ∈ X

Size linear in the number of variables

Deterministic and consistent

Marginal (with no evidence) is the solution
to #P-hard SAT′ problem [Valiant 1979]⇒
no tractable circuit for marginals!
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Marginal (with no evidence) is the solution
to #P-hard SAT′ problem [Valiant 1979]⇒
no tractable circuit for marginals!
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i (Yi · Zi1 + (¬Yi) · Zi2), Zij ∈ X

Size linear in the number of variables

Deterministic and consistent

Marginal (with no evidence) is the solution
to #P-hard SAT′ problem [Valiant 1979]⇒
no tractable circuit for marginals!

⇒ implies hardness of smoothing
consistent circuits!
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MAP of p(X) solves marginal MAP of
p(X, C) which is NP-hard [Campos 2011]⇒
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Structured decomposability

A product node is structured decomposable if decomposes according to a node in a vtree
⇒ stronger requirement than decomposability

X3

X1 X2

vtree

×

X1 X2

×

X1 X2

X3

×

×

X1 X2

×

X1 X2

X3

×

structured decomposable circuit
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structured decomposability = tractable…
Symmetric and group queries (exactly-k, odd-number, etc.) [Bekker et al. 2015]

For the “right” vtree

Marginal MAP queries

Probability of logical circuit event in probabilistic circuit [Choi et al. 2015]

Multiply two probabilistic circuits [Shen et al. 2016]

KL Divergence between probabilistic circuits [Liang et al. 2017b]

Same-decision probability [Oztok et al. 2016]

Expected same-decision probability [Choi et al. 2017]

Expected classifier agreement [Choi et al. 2018]

Expected predictions [Khosravi et al. 2019]
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Smooth ∨ decomposable ∨ deterministic
∨ structured decomposable PCs?

smooth dec. det. str.dec.

Arithmetic Circuits (ACs) [Darwiche 2003] 4 4 4 8
Sum-Product Networks (SPNs) [Poon et al. 2011] 4 4 8 8

Cutset Networks (CNets) [Rahman et al. 2014] 4 4 4 8
PSDDs [Kisa et al. 2014a] 4 4 4 4

AndOrGraphs [Dechter et al. 2007] 4 4 4 4
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Building circuits



Compiling PGMs to probabilistic circuits
Example: from BN trees to circuits

D

C

A B

→

A = 0 A = 1 B = 0 B = 1

C = 0 C = 1

× ×

× ×

D = 0 D = 1
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Learning probabilistic circuits
Parameters Structure

G
en

er
at
iv
e deterministic

closed-form MLE [Kisa et al. 2014b; Peharz et al. 2014]
non-deterministic
EM [Poon et al. 2011; Peharz 2015; Zhao et al. 2016a]
SGD [Sharir et al. 2016; Peharz et al. 2019]
Bayesian [Jaini et al. 2016; Rashwan et al. 2016]
[Zhao et al. 2016b; Trapp et al. 2019; Vergari et al. 2019]

greedy
top-down [Gens et al. 2013; Rooshenas et al. 2014]
[Rahman et al. 2014; Vergari et al. 2015]
bottom-up [Peharz et al. 2013]
hill climbing [Lowd et al. 2008, 2013; Peharz et al. 2014]
[Dennis et al. 2015; Liang et al. 2017a]
random RAT-SPNs [Peharz et al. 2019] XCNet [Di Mauro et al. 2017]

Di
sc
ri
m
in
at
iv
e

deterministic
convex-opt MLE [Liang et al. 2019]
non-deterministic
EM [Rashwan et al. 2018]
SGD [Gens et al. 2012; Sharir et al. 2016]
[Peharz et al. 2019]

greedy
top-down [Shao et al. 2019]
hill climbing [Rooshenas et al. 2016]
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How expressive are probabilistic circuits?
density estimation benchmarks

dataset best circuit BN MADE VAE dataset best circuit BN MADE VAE

nltcs -5.99 -6.02 -6.04 -5.99 dna -79.88 -80.65 -82.77 -94.56
msnbc -6.04 -6.04 -6.06 -6.09 kosarek -10.52 -10.83 - -10.64
kdd -2.12 -2.19 -2.07 -2.12 msweb -9.62 -9.70 -9.59 -9.73
plants -11.84 -12.65 -12.32 -12.34 book -33.82 -36.41 -33.95 -33.19
audio -39.39 -40.50 -38.95 -38.67 movie -50.34 -54.37 -48.7 -47.43
jester -51.29 -51.07 -52.23 -51.54 webkb -149.20 -157.43 -149.59 -146.9
netflix -55.71 -57.02 -55.16 -54.73 cr52 -81.87 -87.56 -82.80 -81.33
accidents -26.89 -26.32 -26.42 -29.11 c20ng -151.02 -158.95 -153.18 -146.9
retail -10.72 -10.87 -10.81 -10.83 bbc -229.21 -257.86 -242.40 -240.94
pumbs* -22.15 -21.72 -22.3 -25.16 ad -14.00 -18.35 -13.65 -18.81
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Conclusions

You can be both tractable and expressive – probabilistic circuits!

Exploit connections to logical circuits.

Many interesting probabilistic queries – necessary and sufficient conditions?

Juice.jl a library for advanced logical and probabilistic inference with circuits in Julia SOON!

46/52



References I
⊕ Valiant, Leslie G (1979). “The complexity of enumeration and reliability problems”. In: SIAM Journal on Computing 8.3, pp. 410–421.

⊕ Cooper, Gregory F (1990). “The computational complexity of probabilistic inference using Bayesian belief networks”. In: Artificial intelligence 42.2-3, pp. 393–405.

⊕ Zhang, Nevin Lianwen and David Poole (1994). “A simple approach to Bayesian network computations”. In: Proceedings of the Biennial Conference-Canadian Society for Computational
Studies of Intelligence, pp. 171–178.

⊕ Roth, Dan (1996). “On the hardness of approximate reasoning”. In: Artificial Intelligence 82.1–2, pp. 273–302.

⊕ Dechter, Rina (1998). “Bucket elimination: A unifying framework for probabilistic inference”. In: Learning in graphical models. Springer, pp. 75–104.

⊕ Darwiche, Adnan (2001). “Recursive conditioning”. In: Artificial Intelligence 126.1-2, pp. 5–41.

⊕ Yedidia, Jonathan S, William T Freeman, and Yair Weiss (2001). “Generalized belief propagation”. In: Advances in neural information processing systems, pp. 689–695.

⊕ Darwiche, Adnan and Pierre Marquis (2002a). “A knowledge compilation map”. In: Journal of Artificial Intelligence Research 17, pp. 229–264.

⊕ — (2002b). “A knowledge compilation map”. In: Journal of Artificial Intelligence Research 17.1, pp. 229–264.

⊕ Dechter, Rina, Kalev Kask, and Robert Mateescu (2002). “Iterative join-graph propagation”. In: Proceedings of the Eighteenth conference on Uncertainty in artificial intelligence. Morgan
Kaufmann Publishers Inc., pp. 128–136.

⊕ Darwiche, Adnan (2003). “A Differential Approach to Inference in Bayesian Networks”. In: J.ACM. 47/52



References II
⊕ Sang, Tian, Paul Beame, and Henry A Kautz (2005). “Performing Bayesian inference by weighted model counting”. In: AAAI. Vol. 5, pp. 475–481.

⊕ Dechter, Rina and Robert Mateescu (2007). “AND/OR search spaces for graphical models”. In: Artificial intelligence 171.2-3, pp. 73–106.

⊕ Lowd, Daniel and Pedro Domingos (2008). “Learning Arithmetic Circuits”. In: Proceedings of the Twenty-Fourth Conference on Uncertainty in Artificial Intelligence. UAI’08. Helsinki,
Finland: AUAI Press, pp. 383–392. ISBN: 0-9749039-4-9. URL: http://dl.acm.org/citation.cfm?id=3023476.3023522.

⊕ Koller, Daphne and Nir Friedman (2009). Probabilistic Graphical Models: Principles and Techniques. MIT Press.

⊕ Choi, Arthur and Adnan Darwiche (2010). “Relax, compensate and then recover”. In: JSAI International Symposium on Artificial Intelligence. Springer, pp. 167–180.

⊕ Campos, Cassio P de (2011). “New complexity results for MAP in Bayesian networks”. In: IJCAI. Vol. 11, pp. 2100–2106.

⊕ Poon, Hoifung and Pedro Domingos (2011). “Sum-Product Networks: a New Deep Architecture”. In: UAI 2011.

⊕ Sontag, David, Amir Globerson, and Tommi Jaakkola (2011). “Introduction to dual decomposition for inference”. In: Optimization for Machine Learning 1, pp. 219–254.

⊕ Gens, Robert and Pedro Domingos (2012). “Discriminative Learning of Sum-Product Networks”. In: Advances in Neural Information Processing Systems 25, pp. 3239–3247.

⊕ — (2013). “Learning the Structure of Sum-Product Networks”. In: Proceedings of the ICML 2013, pp. 873–880.

⊕ Lowd, Daniel and Amirmohammad Rooshenas (2013). “Learning Markov Networks With Arithmetic Circuits”. In: Proceedings of the 16th International Conference on Artificial
Intelligence and Statistics. Vol. 31. JMLR Workshop Proceedings, pp. 406–414.

⊕ Peharz, Robert, Bernhard Geiger, and Franz Pernkopf (2013). “Greedy Part-Wise Learning of Sum-Product Networks”. In: ECML-PKDD 2013. 48/52

http://dl.acm.org/citation.cfm?id=3023476.3023522


References III
⊕ Kisa, Doga et al. (July 2014a). “Probabilistic sentential decision diagrams”. In: Proceedings of the 14th International Conference on Principles of Knowledge Representation and Reasoning

(KR). Vienna, Austria.

⊕ — (July 2014b). “Probabilistic sentential decision diagrams”. In: Proceedings of the 14th International Conference on Principles of Knowledge Representation and Reasoning (KR).
Vienna, Austria. URL: http://starai.cs.ucla.edu/papers/KisaKR14.pdf.

⊕ Martens, James and Venkatesh Medabalimi (2014). “On the Expressive Efficiency of Sum Product Networks”. In: CoRR abs/1411.7717.

⊕ Peharz, Robert, Robert Gens, and Pedro Domingos (2014). “Learning Selective Sum-Product Networks”. In: Workshop on Learning Tractable Probabilistic Models. LTPM.

⊕ Rahman, Tahrima, Prasanna Kothalkar, and Vibhav Gogate (2014). “Cutset Networks: A Simple, Tractable, and Scalable Approach for Improving the Accuracy of Chow-Liu Trees”. In:
Machine Learning and Knowledge Discovery in Databases. Vol. 8725. LNCS. Springer, pp. 630–645.

⊕ Rooshenas, Amirmohammad and Daniel Lowd (2014). “Learning Sum-Product Networks with Direct and Indirect Variable Interactions”. In: Proceedings of ICML 2014.

⊕ Bekker, Jessa et al. (2015). “Tractable Learning for Complex Probability Queries”. In: Advances in Neural Information Processing Systems 28 (NIPS).

⊕ Choi, Arthur, Guy Van den Broeck, and Adnan Darwiche (2015). “Tractable learning for structured probability spaces: A case study in learning preference distributions”. In:
Twenty-Fourth International Joint Conference on Artificial Intelligence (IJCAI).

⊕ Dennis, Aaron and Dan Ventura (2015). “Greedy Structure Search for Sum-product Networks”. In: IJCAI’15. Buenos Aires, Argentina: AAAI Press, pp. 932–938. ISBN:
978-1-57735-738-4.

⊕ Peharz, Robert (2015). “Foundations of Sum-Product Networks for Probabilistic Modeling”. PhD thesis. Graz University of Technology, SPSC. 49/52

http://starai.cs.ucla.edu/papers/KisaKR14.pdf


References IV
⊕ Peharz, Robert et al. (2015). “On Theoretical Properties of Sum-Product Networks”. In: The Journal of Machine Learning Research.

⊕ Vergari, Antonio, Nicola Di Mauro, and Floriana Esposito (2015). “Simplifying, Regularizing and Strengthening Sum-Product Network Structure Learning”. In: ECML-PKDD 2015.

⊕ Cohen, Nadav, Or Sharir, and Amnon Shashua (2016). “On the expressive power of deep learning: A tensor analysis”. In: Conference on Learning Theory, pp. 698–728.

⊕ Jaini, Priyank et al. (2016). “Online Algorithms for Sum-Product Networks with Continuous Variables”. In: Probabilistic Graphical Models - Eighth International Conference, PGM 2016,
Lugano, Switzerland, September 6-9, 2016. Proceedings, pp. 228–239. URL: http://jmlr.org/proceedings/papers/v52/jaini16.html.

⊕ Oztok, Umut, Arthur Choi, and Adnan Darwiche (2016). “Solving PP-PP-complete problems using knowledge compilation”. In: Fifteenth International Conference on the Principles of
Knowledge Representation and Reasoning.

⊕ Rashwan, Abdullah, Han Zhao, and Pascal Poupart (2016). “Online and Distributed Bayesian Moment Matching for Parameter Learning in Sum-Product Networks”. In: Proceedings
of the 19th International Conference on Artificial Intelligence and Statistics, pp. 1469–1477.

⊕ Rooshenas, Amirmohammad and Daniel Lowd (2016). “Discriminative Structure Learning of Arithmetic Circuits”. In: Proceedings of the 19th International Conference on Artificial
Intelligence and Statistics, pp. 1506–1514.

⊕ Sharir, Or et al. (2016). “Tractable generative convolutional arithmetic circuits”. In: arXiv preprint arXiv:1610.04167.

⊕ Shen, Yujia, Arthur Choi, and Adnan Darwiche (2016). “Tractable Operations for Arithmetic Circuits of Probabilistic Models”. In: Advances in Neural Information Processing Systems 29:
Annual Conference on Neural Information Processing Systems 2016, December 5-10, 2016, Barcelona, Spain, pp. 3936–3944.

⊕ Zhao, Han, Pascal Poupart, and Geoffrey J Gordon (2016a). “A Unified Approach for Learning the Parameters of Sum-Product Networks”. In: Advances in Neural Information
Processing Systems 29. Ed. by D. D. Lee et al. Curran Associates, Inc., pp. 433–441. 50/52

http://jmlr.org/proceedings/papers/v52/jaini16.html


References V
⊕ Zhao, Han et al. (2016b). “Collapsed Variational Inference for Sum-Product Networks”. In: In Proceedings of the 33rd International Conference on Machine Learning. Vol. 48.

⊕ Choi, YooJung, Adnan Darwiche, and Guy Van den Broeck (2017). “Optimal feature selection for decision robustness in Bayesian networks”. In: Proceedings of the 26th International
Joint Conference on Artificial Intelligence (IJCAI).

⊕ Di Mauro, Nicola et al. (2017). “Fast and Accurate Density Estimation with Extremely Randomized Cutset Networks”. In: ECML-PKDD 2017.

⊕ Liang, Yitao, Jessa Bekker, and Guy Van den Broeck (2017a). “Learning the structure of probabilistic sentential decision diagrams”. In: Proceedings of the 33rd Conference on
Uncertainty in Artificial Intelligence (UAI).

⊕ Liang, Yitao and Guy Van den Broeck (Aug. 2017b). “Towards Compact Interpretable Models: Shrinking of Learned Probabilistic Sentential Decision Diagrams”. In: IJCAI 2017
Workshop on Explainable Artificial Intelligence (XAI). URL: http://starai.cs.ucla.edu/papers/LiangXAI17.pdf.

⊕ Choi, YooJung and Guy Van den Broeck (2018). “On robust trimming of Bayesian network classifiers”. In: arXiv preprint arXiv:1805.11243.

⊕ Rashwan, Abdullah, Pascal Poupart, and Chen Zhitang (2018). “Discriminative Training of Sum-Product Networks by Extended Baum-Welch”. In: International Conference on
Probabilistic Graphical Models, pp. 356–367.

⊕ Khosravi, Pasha et al. (2019). “What to Expect of Classifiers? Reasoning about Logistic Regression with Missing Features”. In: Proceedings of the 28th International Joint Conference on
Artificial Intelligence (IJCAI).

⊕ Liang, Yitao and Guy Van den Broeck (2019). “Learning Logistic Circuits”. In: Proceedings of the 33rd Conference on Artificial Intelligence (AAAI).

⊕ Peharz, Robert et al. (2019). “Random Sum-Product Networks: A Simple and Effective Approach to Probabilistic Deep Learning”. In: Uncertainty in Artificial Intelligence. 51/52

http://starai.cs.ucla.edu/papers/LiangXAI17.pdf


References VI

⊕ Shao, Xiaoting et al. (2019). “Conditional Sum-Product Networks: Imposing Structure on Deep Probabilistic Architectures”. In: arXiv preprint arXiv:1905.08550.

⊕ Trapp, Martin et al. (2019). “Bayesian Learning of Sum-Product Networks”. In: Advances in neural information processing systems (NeurIPS).

⊕ Vergari, Antonio et al. (2019). “Automatic Bayesian density analysis”. In: Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 33, pp. 5207–5215.

52/52


	Why tractable inference?
	Probabilistic Circuits
	Building circuits
	References

