
Probabilistic
Circuits

Representation
Learning
Reasoning

Antonio Vergari
University of Edinburgh
avergari@exseed.ed.ac.uk

Robert Peharz
Graz University of Technology
robert.peharz@tugraz.at

YooJung Choi
Arizona State University
yj.choi@asu.edu

December 5th, 2022 - Tutorial @ NeurIPS 2022

Why?

healthcare loan grants self-driving cars

ML models are everywhere…!
2/138

Why?

healthcare loan grants self-driving cars

neural networks are everywhere…!
3/138

Why?

struggle with uncertainty be unfair be not robust

but they can…
4/138

Why?

q1

“What is the probability of a
treatment for a patient with
unavailable records?”

q2

“How fair is the predic-
tion is a certain protected
attribute changes?”

q3
“Can we certify no adver-
sarial examples exist?”

how can we reason about their behavior?
5/138

Why

q1

“What is the probability of a
treatment for a patient with
unavailable records?”

q2

“How fair is the predic-
tion is a certain protected
attribute changes?”

q3
“Can we certify no adver-
sarial examples exist?”

reliably and efficiently?
6/138

Why?

“How can we design and learn
deep learning models
that can reliably reason?”

7/138

Why?

“How can we design and learn
deep learning models
that can reliably reason?”

expressive and flexible computational graphs

8/138

Why?

“How can we design and learn
deep learning models
that can reliably reason?”

seamlessly integrate probabilistic and logical inference

9/138

Why?

“How can we design and learn
deep learning models
that can reliably reason?”

exact and efficient inference

10/138

How?

structure!
structure!
structure!

11/138

How?

structure!
structure!
structure!

impose structure over computational graphs
12/138

How?

structure!
structure!
structure!

exploit structure in the reasoning task
12/138

How?

structure!
structure!
structure!

inject prior background knowledge
12/138

Probabilistic Circuits
a grammar for structured tractable deep learning models

13/138

Probabilistic Circuits
a grammar for structured tractable deep learning models

Building Circuits
imposing structure and learning parameters from data and prior knowledge

13/138

Probabilistic Circuits
a grammar for structured tractable deep learning models

Building Circuits
imposing structure and learning parameters from data and prior knowledge

Advanced Reasoning
how do structure and reasoning interplay for real-world applications

13/138

Probabilistic Circuits

Reasoning about ML models

q1

“What is the probability of a
treatment for a patient with
unavailable records?”

q2

“How fair is the predic-
tion is a certain protected
attribute changes?”

q3
“Can we certify no adver-
sarial examples exist?”

15/138

Reasoning about ML models

q1

∫
p(xo,xm)dXm

(missing values)
q2

Exc∼p(Xc|Xs=0) [f0(xc)]−
Exc∼p(Xc|Xs=1) [f1(xc)]
(fairness)

q3 Ee∼N (0,σ2ID) [f(x+ e)]
(adversarial robust.)

…in the language of probabilities
16/138

Inspecting behaviors

q1

∫
p(xo,xm)dXm

(missing values)
q2

Exc∼p(Xc|Xs=0) [f0(xc)]−
Exc∼p(Xc|Xs=1) [f1(xc)]
(fairness)

q3 Ee∼N (0,σ2ID) [f(x+ e)]
(adversarial robust.)

it is crucial we compute them exactly and in polytime!
17/138

Inspecting behaviors

q1

∫
p(xo,xm)dXm

(missing values)
q2

Exc∼p(Xc|Xs=0) [f0(xc)]−
Exc∼p(Xc|Xs=1) [f1(xc)]
(fairness)

q3 Ee∼N (0,σ2ID) [f(x+ e)]
(adversarial robust.)

it is crucial we compute them tractably!
18/138

Goal

Given a reasoning task
can we design
a class of expressive models
that is tractable for it?

19/138

Goal

Given a reasoning task
can we design
a class of deep computational graphs
that is tractable for it?

20/138

m
or
e
ex

pr
es
si
ve

le
ss

ex
pr
es
si
ve

more tractable

less tractable

21/138

m
or
e
ex

pr
es
si
ve

le
ss

ex
pr
es
si
ve

more tractable

less tractable

Flows Diffusion

VAEs GANs

Expressive models are not much tractable…
22/138

m
or
e
ex

pr
es
si
ve

le
ss

ex
pr
es
si
ve

more tractable

less tractable

Flows Diffusion

VAEs GANs

GMMs

HMMs

Trees

Tractable models are not that expressive…
23/138

m
or
e
ex

pr
es
si
ve

le
ss

ex
pr
es
si
ve

more tractable

less tractable

Circuits
Circuits

Circuits

Flows Diffusion

VAEs GANs

GMMs

HMMs

Trees

Circuits can be both expressive and tractable!
24/138

m
or
e
ex

pr
es
si
ve

le
ss

ex
pr
es
si
ve

more tractable

less tractable

Circuits
Circuits

Circuits

Flows Diffusion

VAEs GANs

GMMs

HMMs

Trees

Start simple…
25/138

m
or
e
ex

pr
es
si
ve

le
ss

ex
pr
es
si
ve

more tractable

less tractable

Circuits
Circuits

Circuits

Flows Diffusion

VAEs GANs

GMMs

HMMs

Trees
overparam.

then make it more expressive!
26/138

m
or
e
ex

pr
es
si
ve

le
ss

ex
pr
es
si
ve

more tractable

less tractable

Circuits
Circuits

Circuits

Flows Diffusion

VAEs GANs

GMMs

HMMs

Trees
overparam.

structure

impose structure!
27/138

GMMs
as computational graphs

−10 −5 0 5 10

X1

0.00

0.05

0.10

0.15

0.20

0.25

p(
X

1)

p(X) = w1 · p1(X1)+w2 · p2(X1)

⇒ translating inference to data structures…

28/138

GMMs
as computational graphs

X1

0.8

0.2

p(X1) = 0.2·p1(X1)+0.8·p2(X1)

⇒ …e.g., as a weighted sum unit over Gaussian input distributions

28/138

GMMs
as computational graphs

.06

.21

1 0.09

0.8

0.2

p(X = 1) =0.2 · p1(X1 = 1)

+0.8 · p2(X1 = 1)

⇒ inference = feedforward evaluation

28/138

GMMs
as computational graphs

X1

X1

0.8

0.2

A simplified notation:

⇒ scopes attached to inputs
⇒ edge directions omitted

28/138

GMMs
as computational graphs

p(X) =w1 · p1(XL
1) · p1(XR

1)+

w2 · p2(XL
2) · p2(XR

2)

⇒ local factorizations…

29/138

GMMs
as computational graphs

XR
2

XL
2

XR
1

XL
1

×

×

w1

w2

p(X) =w1 · p1(XL
1) · p1(XR

1)+

w2 · p2(XL
2) · p2(XR

2)

⇒ …are product units

29/138

HMMs
as computational graphs

Z1

X1

Z2

X2

. . .

X2

X2

. . .

. . .

×

×

X1

X1

×

×

30/138

Probabilistic Circuits (PCs)
A grammar for tractable computational graphs

X1

31/138

I. A simple tractable function is a circuit

Probabilistic Circuits (PCs)
A grammar for tractable computational graphs

X1 X1 X1

w1 w2

31/138

I. A simple tractable function is a circuit

II. A weighted combination of circuits is a circuit

Probabilistic Circuits (PCs)
A grammar for tractable computational graphs

X1 X1 X1

w1 w2

×

X1 X2

31/138

I. A simple tractable function is a circuit

II. A weighted combination of circuits is a circuit

III. A product of circuits is a circuit

Probabilistic Circuits (PCs)
A grammar for tractable computational graphs

X1 X1 X1

w1 w2

×

X1 X2

×

X1 X2

×

X1 X2

w1 w2

31/138

Probabilistic Circuits (PCs)
A grammar for tractable computational graphs

X1 X1 X1

w1 w2

×

X1 X2

×

X1 X2

×

X1 X2

w1 w2

× ×

× ×× ×

X1

X2

X1

X2

X3 X4 X3 X4

31/138

Building PCs in Python with SPFlow

import spn.structure.leaves.parametric.Parametric as param
from param import Categorical , Gaussian

PC = 0.4 * (Categorical(p=[0.2, 0.8], scope=0) *
(0.3 * (Gaussian(mean=1.0, stdev=1.0, scope=1) *

Categorical(p=[0.4, 0.6], scope=2))
+ 0.7 * (Gaussian(mean=-1.0, stdev=1.0, scope=1) *

Categorical(p=[0.6, 0.4], scope=2)))) \
+ 0.6 * (Categorical(p=[0.2, 0.8], scope=0) *

Gaussian(mean=0.0, stdev=0.1, scope=1) *
Categorical(p=[0.4, 0.6], scope=2))

Molina et al., “SPFlow: An easy and extensible library for deep probabilistic learning using
sum-product networks”, 2019 32/138

Probabilistic queries = feedforward evaluation

p(X1 = −1.85, X2 = 0.5, X3 = −1.3, X4 = 0.2)

X1

X1

X2

X2

0.9

0.1

0.
5

0.5

0.3

0.7

0.
2

0.8

×

×

0.5

0.5

0.
6

0.4

X3

X3

×

×

0.8

0.2

0.
5

0.5

X4

X4

×

×

0.8

0.2

33/138

Probabilistic queries = feedforward evaluation

p(X1 = −1.85, X2 = 0.5, X3 = −1.3, X4 = 0.2)

1.29

0.18

0.35

2.42

−1.85

−1.85

0.5

0.5

0.9

0.1

0.
5

0.5

0.3

0.7

0.
2

0.8

×

×

0.5

0.5

0.
6

0.4

1.21

0.67−1.3

−1.3

×

×

0.8

0.2

0.
5

0.5

0.39

0.540.2

0.2

×

×

0.8

0.2

33/138

Probabilistic queries = feedforward evaluation

p(X1 = −1.85, X2 = 0.5, X3 = −1.3, X4 = 0.2) = 0.75

1.29

0.18

0.35

2.42

−1.85

−1.85

0.5

0.5

1.21

0.74

1.80

2.01

0.9

0.1

0.
5

0.5

0.3

0.7

0.
2

0.8

2.18

1.47

1.82

1.90

0.5

0.5

0.
6

0.4

1.21

0.67−1.3

−1.3

1.22

2.29

1.43

1.76

0.8

0.2

0.
5

0.5

0.39

0.540.2

0.2

0.77

0.68

0.75
0.8

0.2

0.75

33/138

Tractable likelihoods

modeling time, frequencies, latent spaces…

Yu et al., “Whittle Networks: A Deep Likelihood Model for Time Series”, 2021 34/138

…why PCs?

1. A grammar for tractable models
One formalism to represent many models. #GMMs #HMMs #Trees #XGBoost, …

35/138

…why PCs?

1. A grammar for tractable models
One formalism to represent many models. #GMMs #HMMs #Trees #XGBoost, …

2. Expressiveness
Stacking millions latent variables. #hierachical #mixtures #polynomials

35/138

How expressive?

competitive with Flows and VAEs!

Dang et al., “Sparse Probabilistic Circuits via Pruning and Growing”, 2022 36/138

How scalable?

up to billions of parameters

Liu et al., “Scaling Up Probabilistic Circuits by Latent Variable Distillation”, 2022 37/138

Just sum, products and distributions?

X1

X2

X3

X4

X5

X6

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

just arbitrarily compose them like a neural network!

38/138

Just sum, products and distributions?

X1

X2

X3

X4

X5

X6

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

just arbitrarily compose them like a neural network!
⇒ structural properties needed for tractability

38/138

…why PCs?

1. A grammar for tractable models
One formalism to represent many models. #GMMs #HMMs #Trees #XGBoost, …

2. Increase expressiveness
Stacking millions latent variables. #hierachical #mixtures #polynomials

3. Tractability == Structural Properties !!!

Exact computations for certain reasoning tasks are certified by verifying certain structural
properties. #marginals #expectations #MAP, …

39/138

Which structural properties
for complex reasoning

???

40/138

Structural properties

smoothness

decomposability

compatibility

determinism

Vergari et al., “A Compositional Atlas of Tractable Circuit Operations: From Simple
Transformations to Complex Information-Theoretic Queries”, 2021 41/138

Structural properties

smoothness

decomposability

compatibility

determinism

the inputs of sum units are defined over the same variables

X1 X1

w1 w2

smooth circuit

X1 X2

w1 w2

non-smooth circuit

Vergari et al., “A Compositional Atlas of Tractable Circuit Operations: From Simple
Transformations to Complex Information-Theoretic Queries”, 2021 41/138

Structural properties

smoothness

decomposability

compatibility

determinism

the inputs of prod units are defined over disjoint variable sets

×

X1 X2 X3

decomposable circuit

×

X1 X1 X3

non-decomposable circuit

Vergari et al., “A Compositional Atlas of Tractable Circuit Operations: From Simple
Transformations to Complex Information-Theoretic Queries”, 2021 41/138

smooth + decomposable circuits = …

allow for the tractable computation of arbitrary integrals

p(y) =

∫
val(Z)

p(z,y) dZ, ∀Y ⊆ X, Z = X \Y

⇒ sufficient and necessary conditions for a
single feedforward evaluation

⇒ can marginalize out any missing values

Choi et al., “Probabilistic Circuits: A Unifying Framework for Tractable Probabilistic Modeling”,
2021 42/138

Probabilistic queries = feedforward evaluation

p(X1 = −1.85, X4 = 0.2)

1.29

0.18

1.00

1.00

−1.85

−1.85

X2

X2

0.9

0.1

0.
5

0.5

0.3

0.7

0.
2

0.8

×

×

0.5

0.5

0.
6

0.4

1.0

1.0X3

X3

×

×

0.8

0.2

0.
5

0.5

0.39

0.540.2

0.2

×

×

0.8

0.2

43/138

Probabilistic queries = feedforward evaluation

p(X1 = −1.85, X4 = 0.2)

1.29

0.18

1.00

1.00

−1.85

−1.85

X2

X2

1.21

0.74

1.00

1.00

0.9

0.1

0.
5

0.5

0.3

0.7

0.
2

0.8

0.74

1.21

0.98

0.92

0.5

0.5

0.
6

0.4

1.0

1.0X3

X3

0.98

0.92

0.97

0.95

0.8

0.2

0.
5

0.5

0.39

0.540.2

0.2

0.52

0.37

0.59
0.8

0.2

0.59

43/138

smooth + decomposable circuits = …

Computing arbitrary integrations (or summations)
⇒ linear in circuit size!

E.g., suppose we want to compute Z:∫
p(x)dx

44/138

smooth + decomposable circuits = …

If p(x) =
∑

i wipi(x), (smoothness):

∫
p(x)dx =

∫ ∑
i

wipi(x)dx =

=
∑
i

wi

∫
pi(x)dx

⇒ integrals are “pushed down” to inputs

× ×

× ×× ×

X1

X2

X1

X2

X3 X4 X3 X4

44/138

smooth + decomposable circuits = …

If p(x,y, z) = p(x)p(y)p(z), (decomposability):

∫ ∫ ∫
p(x,y, z)dxdydz =

=

∫ ∫ ∫
p(x)p(y)p(z)dxdydz =

=

∫
p(x)dx

∫
p(y)dy

∫
p(z)dz

⇒ integrals decompose into easier ones

× ×

× ×× ×

X1

X2

X1

X2

X3 X4 X3 X4

44/138

smooth + decomposable circuits = …

Analogously, for arbitrary conditional queries:

p(q | e) = p(q, e)

p(e)

1. evaluate p(q, e) ⇒ one feedforward pass

2. evaluate p(e) ⇒ another feedforward pass

⇒ …still linear in circuit size!

× ×

× ×× ×

X1

X2

X1

X2

X3 X4 X3 X4

45/138

Tractable inference on PCs
Einsum networks

Peharz et al., “Einsum Networks: Fast and Scalable Learning of Tractable Probabilistic Circuits”,
2020 46/138

Original Missing Conditional sample

Which structural properties
for complex reasoning

smooth + decomposable

47/138

Which structural properties
for complex reasoning

smooth + decomposable ??????

48/138

Adversarial smoothing

Certify robustness for inputs x by
smoothing it by computing

gσ(x) = Ee∼N (0,σI) [f(x+ e)]

Subramani et al., “Exact and Efficient Adversarial Robustness with Decomposable Neural
Networks”, 2021 49/138

Adversarial smoothing

Certify robustness for inputs x by
smoothing it by computing

gσ(x) = Ee∼N (0,σI) [f(x+ e)]

Subramani et al., “Exact and Efficient Adversarial Robustness with Decomposable Neural
Networks”, 2021 49/138

Adversarial smoothing

Certify robustness for inputs x by
smoothing it by computing

gσ(x) = Ee∼N (0,σI) [f(x+ e)]

in a single feed-forward evaluation, if
we impose some structure over a
computational graph

Subramani et al., “Exact and Efficient Adversarial Robustness with Decomposable Neural
Networks”, 2021 49/138

decomposable circuits = tractable adv smoothing

If f(x) =
∑

i wif i(x):

∫
N (e)f(x+ e)de =

∑
i

wiEN (e)[f i(x+ e)]

⇒ expectations are “pushed down” to inputs

× ×

× ×× ×

X1

X2

X1

X2

X3 X4 X3 X4

50/138

decomposable circuits = tractable adv smoothing

If f(x,y, z) = f(x)f(y)f(z), (decomposability):

∫
N (ex)N (ey)N (ey)f(x+ ex,y + ey, z+ ez)dexdeydez

Eex [f(x+ ex)] · Eey [f(y + ey)] · Eez [f(z+ ez)]

⇒ expectations decompose into easier ones

× ×

× ×× ×

X1

X2

X1

X2

X3 X4 X3 X4

50/138

Which structural properties
for complex reasoning

smooth + decomposable decomposable

51/138

Which structural properties
for complex reasoning

smooth + decomposable ??????? decomposable

52/138

General expectations

Integrals involving two or more functions:∫
p(x)f(x)dX

53/138

General expectations

Integrals involving two or more functions:∫
p(x)f(x)dX

represent both p and f as circuits…but with
which structural properties? E.g.,

53/138

General expectations

Integrals involving two or more functions:∫
p(x)f(x)dX

represent both p and f as circuits…but with
which structural properties? E.g.,

Exc∼p(Xc|Xs=0) [f0(xc)]− Exc∼p(Xc|Xs=1) [f1(xc)]

53/138

Structural properties

smoothness

decomposability

compatibility

determinism

Vergari et al., “A Compositional Atlas of Tractable Circuit Operations: From Simple
Transformations to Complex Information-Theoretic Queries”, 2021 54/138

Structural properties

smoothness

decomposability

compatibility

determinism

X1

X1

X2

X2

×

×

X3

X3

×

×

X2

X1

×

X3

×

compatible circuits

Vergari et al., “A Compositional Atlas of Tractable Circuit Operations: From Simple
Transformations to Complex Information-Theoretic Queries”, 2021 54/138

Structural properties

smoothness

decomposability

compatibility

determinism

X3

X2X2

X3

X1

X3

×

×

×

×

X1

X2

×

×

X2

X1

×

X3

×

non-compatible circuits

Vergari et al., “A Compositional Atlas of Tractable Circuit Operations: From Simple
Transformations to Complex Information-Theoretic Queries”, 2021 54/138

Tractable products

X1

X2

X3

× ×

X1

X1

X2

×

× X3

×

X1

X1

X2

X2

×

×

X3

X3

×

×

smooth, decomposable
compatible

exactly compute
∫
p(x)f (x)dX in time O(|p||f |)

Vergari et al., “A Compositional Atlas of Tractable Circuit Operations: From Simple
Transformations to Complex Information-Theoretic Queries”, 2021 55/138

Which structural properties
for complex reasoning

smooth + decomposable smooth + compatible decomposable

56/138

Structural properties

smoothness

decomposability

compatibility

determinism

stay tuned!

Vergari et al., “A Compositional Atlas of Tractable Circuit Operations: From Simple
Transformations to Complex Information-Theoretic Queries”, 2021 57/138

Which structural properties
for complex reasoning

reason with constraints expected predictions computing uncertainties

58/138

m
or
e
ex

pr
es
si
ve

le
ss

ex
pr
es
si
ve

more tractable

less tractable

Circuits
Circuits

Circuits

Flows Diffusion

VAEs GANs

GMMs

HMMs

Trees
overparam.

structure

structure + expressiveness
59/138

Building Probabilistic Circuits

61/138

Origins: Compilation

Knowledge compilation
Tractable Boolean circuits (Darwiche et al. 2002)

Compile logic prior knowledge into a propositional formula

Natural representation: deep logic circuits (negational normal form, NNF)

Equipped with structural properties such as decomposability, smoothness,
determinism, etc., corresponding to various tractable inference routines (SAT,
model counting, entailment, equivalence, …)

Semantic Probabilistic Layers
(Ahmed et al. 2022a)

All cats are animals
All dogs are animals
… 63/138

Compiling probabilistic graphical models
Arithmetic circuits (Darwiche 2002, 2003, 2009)

Compile a given Bayesian network into an arithmetic circuit—syntactically
equivalent to smooth, decomposable and deterministic PCs

Either via logic encoding of Bayesian network + knowledge compilation

Or record “execution trace” (sum and product operations) of traditional inference
algorithms (junction tree, variable elimination)

Z1

X1

Z2

X2

. . .

X2

X2

. . .

. . .

×

×

X1

X1

×

×

64/138

Compilation
Selected references

Logic circuits, interplay between structural properties and tractable reasoning
(Darwiche et al. 2002)

Converting probabilistic graphical models via knowledge compilation
(Darwiche 2002)

Logic circuit compilers
(Darwiche 2004; Muise et al. 2012; Bova et al. 2015; Lagniez et al. 2017; Oztok et al. 2018)

Neuro-symbolic models using logic circuits
(Ahmed et al. 2022a,b)

65/138

Parameter Learning

Gradient descent (of course)

PCs are computational graphs

Hence we can just learn them as any other neural net using SGD

Use re-parameterization if parameters should satisfy constraints:
soft-max for sum-weights (non-negative, sum-to-one)
soft-plus for variances
low-rank plus diagonal for covariance matrices

Allows for conditional distributions

67/138

Conditional PCs
(Shao et al. 2019)

68/138

Maximum likelihood (frequentist)

PCs can be interpreted as hierarchical latent variable models, where each sum node
corresponds to a discrete latent variable (Peharz et al. 2016). This allows to perform
classical maximum-likelihood estimation.

69/138

Closed-form maximum likelihood

When the circuit is deterministic, there is even an closed-form ML solution, which is
incredible fast:

julia> using ProbabilisticCircuits;
julia> data, structure = load(...);
julia> num_examples(data)
17412
julia> num_edges(structure)
270448
julia> @btime estimate_parameters(structure , data);

63.585 ms (1182350 allocations: 65.97 MiB)

Custom SIMD and CUDA kernels to parallelize over layers and training examples.
https://github.com/Juice-jl/ 70/138

https://github.com/Juice-jl/

Expectation-Maximization

When the PC is not deterministic, we can still apply expectation-maximization (Peharz

et al. 2016). EM can piggy-back on autodfiff:
train_x , valid_x , test_x = get_mnist_images([7])

graph = Graph.poon_domingos_structure(shape=(28,28), delta=[7])
args = EinsumNetwork.Args(num_var=train_x.shape[1], num_dims=1,

num_classes=1, num_sums=28,
num_input_distributions=28,
exponential_family=EinsumNetwork.BinomialArray ,
exponential_family_args={'N':255},
online_em_frequency=1, online_em_stepsize=0.05)

PC = EinsumNetwork.EinsumNetwork(graph, args)
PC.initialize()
PC.to('cuda')

https://github.com/cambridge-mlg/EinsumNetworks 71/138

https://github.com/cambridge-mlg/EinsumNetworks

Expectation-Maximization

for epoch_count in range(10):
train_ll , valid_ll , test_ll = compute_loglikelihood()
start_t = time.time()

for idx in get_batches(train_x , 100):
outputs = PC.forward(train_x[idx, :])
log_likelihood = EinsumNetwork.log_likelihoods(outputs).sum()
log_likelihood.backward()
PC.em_process_batch()

print_performance(epoch_count , train_ll , valid_ll , test_ll , time.time() - start_t)

https://github.com/cambridge-mlg/EinsumNetworks 72/138

https://github.com/cambridge-mlg/EinsumNetworks

Expectation-Maximization

Peharz et al., “Einsum Networks: Fast and Scalable Learning of Tractable Probabilistic Circuits”,
2020 73/138

Bayesian parameter learning

Formulate a prior p(w,θ) over sum-weights and parameters of input units. Then
perform posterior inference:

p(w,θ|D) ∝ p(w,θ) p(D|w,θ)

Moment matching (oBMM) (Jaini et al. 2016; Rashwan et al. 2016)

Collapsed variational inference algorithm (Zhao et al. 2016)

Gibbs sampling (Trapp et al. 2019; Vergari et al. 2019)

74/138

Structure Learning

Region graphs
Laying out the PC structure on a high level

Region graphs (RGs) describe decompositional structure

RGs are bipartite, directed graphs containing regions (R) and partitions (P)

Input and output nodes of the RG are regions

Regions have a scope (receptive field), denoted as sc(R) ⊆ X

For every partition P it holds that

sc(Rout) =
∪

Rin∈ inputs(P)

sc(Rin)

sc(R′) ∩ sc(R′′) = ∅, R′ ̸= R′′ ∈ inputs(P)

76/138

Example region graph

77/138

(Here, every partition has 2 input regions.
This is often assumed, but not necessary.)

From region graphs to PCs

78/138

From region graphs to PCs

78/138

Equip each input region with non-linear units
ϕ1, . . . , ϕK

From region graphs to PCs

78/138

Equip each internal region with sum nodes

From region graphs to PCs

78/138

Often, output region has only a single sum

From region graphs to PCs

78/138

Equip partitions with products, combining units
in input regions in all possible ways

From region graphs to PCs

78/138

Equip partitions with products, combining units
in input regions in all possible ways

From region graphs to PCs

78/138

Connect products to sum units above

From region graphs to PCs

Equip each input region (leaf)R withK units ϕ1, . . . , ϕK , which are non-linear
functions over sc(R). Usually, ϕ1, . . . , ϕK are probability densities. K can be
different for each input region.

Equip each other region withK sum units. K can be different for each internal
region. Often, for the root regionK = 1, when PC is used as density estimator.

Equip each partitionP with as many products as there are combinations of units in
the input regions toP , selecting one unit from each region. Formally, ifP has input
regionsR1,R2 . . . ,RI , insert one product

∏I
i=1 ui for each

(u1, u2, . . . , uI) ∈ R1 ×R2 × · · · × RI .

Connect each
∏I

i=1 ui inP to all sum units in the output regions ofP .

79/138

From region graphs to PCs

Resulting PC has alternating sum and product units (not a strong constraint)

We can easily scale the PC (overparameterize, increase expressivity) by equipping
regions with more units

RGs can be seen as a vectorized version of PCs – each region and partition can be
seen as as a module

Resulting PC will be smooth and decomposable, i.e., we can integrate, marginalize,
and take conditionals

After the PC has been constructed, we might discard the RG

80/138

Scaling up image models
Latent Variable Distillation

Liu et al., “Scaling Up Probabilistic Circuits by Latent Variable Distillation”, 2022 81/138

How to construct and learn RGs?

Random regions graphs
The “no-learning” option (Peharz et al. 2019)

Generating a random region graph, by recursively splittingX into two random parts:

83/138

Image-tailored circuit structure
“Recursive image slicing” (Poon et al. 2011)

Images yield a natural region graph by using axis-aligned splits:

Start with the full image (=output region)

Define partitions by applying horizontal and vertical splits

Recurse on the newly generated sub-images (internal regions)

Structure somewhat reminiscent to convolutions

Generates RGs which are “true DAGs,” i.e. regions get re-used

84/138

85/138

85/138

85/138

85/138

Generative modeling
Inpainting

86/138

(Peharz et al. 2020)

Adversarial smoothing

Salman et al. 2019 showed that smoothing a classifier f with noise delivers strong
guarantees on the non-existence of adversarial examples

Specifically, if the output of f is bounded, then the smoothed classifier

f̄(x) = Eϵ∼N (0,σI) [f(x+ ϵ)]

will be Lipschitz, guaranteeing the non-existence of adversarial examples within a
certain ℓ2-ball around x (depending on the class margin and σ)

How to compute f̄(x) for neural networks? Monte Carlo seems to only solution,
which is never exact and requiresmany evaluations for a single test sample

87/138

Adversarial smoothing
Exact smoothing with DecoNets (Subramani et al. 2021)

Using image circuits with shallow neural networks as inputs (“DecoNets”) delivers
competitive image classifiers which allow exact probabilistic smoothing.

88/138

Data-driven structure learning
“Recursive data slicing” (Gens et al. 2013)

89/138

Expand regions with clustering

Data-driven structure learning
“Recursive data slicing” (Gens et al. 2013)

89/138

Number of clusters = number of partitions

Data-driven structure learning
“Recursive data slicing” (Gens et al. 2013)

89/138

Try to find independent groups of variables
(e.g. independence tests)

Data-driven structure learning
“Recursive data slicing” (Gens et al. 2013)

89/138

Success→ partition into new regions

Data-driven structure learning
“Recursive data slicing” (Gens et al. 2013)

89/138

Try to find independent groups of variables
(e.g. independence tests)

Data-driven structure learning
“Recursive data slicing” (Gens et al. 2013)

89/138

Success→ partition into new regions

Data-driven structure learning
“Recursive data slicing” (Gens et al. 2013)

89/138

Single variable

Data-driven structure learning
“Recursive data slicing” (Gens et al. 2013)

89/138

Single variable→ input region

Data-driven structure learning
“Recursive data slicing” (Gens et al. 2013)

89/138

Expand regions with clustering

Data-driven structure learning
“Recursive data slicing” (Gens et al. 2013)

89/138

Number of clusters = number of partitions

And so on…

Data-driven structure learning
“Recursive data slicing” (Gens et al. 2013)

89/138

Stopping conditions: minimal number
of features, samples, depth, …

Clustering ratios also deliver (initial)
parameters

Smooth & Decomposable Circuits

Tractable integration

LearnSPN
Selected references

ID-SPN (Rooshenas et al. 2014)

LearnSPN-b/T/B (Vergari et al. 2015)

For heterogeneous data (Molina et al. 2018)

Using k-means (Butz et al. 2018) or SVD splits (Adel et al. 2015)

Learning DAGs (Dennis et al. 2015; Jaini et al. 2018)

Approximating independence tests (Di Mauro et al. 2018)

90/138

Cutset networks
Besides clustering, decision tree learning can be used as PC learner. Cutset networks,
decision trees over simple probabilistic models (Chow-Liu trees) (Rahman et al. 2014):

Cutset networks can easily be converted into smooth, decomposable and
deterministic PCs. 91/138

Decision trees as PCs
Also vanilla decision tree learners can be used to learn PCs, by augmenting the leaves
with distributions over inputs (Correia et al. 2020). Allows to treatmissing features and
outlier detection.

92/138

93/138

Advanced Reasoning with
Probabilistic Circuits

Reasoning about ML models

q1

“What is the probability of a
treatment for a patient with
unavailable records?”

q2

“How fair is the predic-
tion is a certain protected
attribute changes?”

q3
“Can we certify no adver-
sarial examples exist?”

∫
p(xo,xm)dXm

Exc∼p(Xc|Xs=0) [f0(xc)]−
Exc∼p(Xc|Xs=1) [f1(xc)]

Ee∼N (0,σ2ID) [f(x+ e)]

95/138

Maximum-a-posteriori (MAP) Inference
aka Most probable explanation (MPE)

E.g., multi-label classification: what are the most likely labels y for an input x?

argmax
y

p(y | x)

E.g., image segmentation: what is the most likely latent space for the given pixels?

Yuan et al., “Modeling spatial layout for scene image understanding via a novel multiscale
sum-product network”, 2016
Friesen and Domingos, “Submodular Sum-product Networks for Scene Understanding”, 2016 96/138

Determinism
aka support-decomposability

A sum unit is deterministic if its inputs have disjoint supports

×

X1 ≤ θ X2

×

X1 > θ X2

w1 w2

deterministic circuit

×

X1 X2

×

X1 X2

w1 w2

non-deterministic circuit

Darwiche and Marquis, “A knowledge compilation map”, 2002 97/138

Determinism + decomposability = tractable MAP

Computing maximization with arbitrary evidence e
⇒ linear in circuit size!

E.g., suppose we want to compute:

max
q

p(q | e)

× ×

× ×× ×

X1

X2

X1

X2

X3 X4 X3 X4

98/138

Determinism + decomposability = tractable MAP

If p(q, e) =
∑

i wipi(q, e) = maxi wipi(q, e),
(deterministic sum unit):

max
q

p(q, e) = max
q

∑
i

wipi(q, e)

= max
q

max
i

wipi(q, e)

= max
i

max
q

wipi(q, e)

⇒ one non-zero term, thus sum is max

× ×

× ×× ×

X1

X2

X1

X2

X3 X4 X3 X4

98/138

Determinism + decomposability = tractable MAP

If p(q, e) = p(qx, ex,qy, ey) = p(qx, ex)p(qy, ey)
(decomposable product unit):

max
q

p(q | e) = max
q

p(q, e)

= max
qx,qy

p(qx, ex,qy, ey)

= max
qx

p(qx, ex) ·max
qy

p(qy, ey)

⇒ solving optimization independently

× ×

× ×× ×

X1

X2

X1

X2

X3 X4 X3 X4

98/138

Determinism + decomposability = tractable MAP

E.g., for argmaxx1,x3
p(x1, x3 | x2, x4):

1. turn sum into max units and
input distributions into max distributions

2. feedforward evaluation for
maxx1,x3 p(x1, x3 | x2, x4)

3. retrieve max activations in backward pass

4. compute MAP states forX1 andX3 at input units

× ×

× ×× ×

X1

X2

X1

X2

X3 X4 X3 X4

98/138

Determinism + decomposability = tractable MAP

E.g., for argmaxx1,x3
p(x1, x3 | x2, x4):

1. turn sum into max units and
input distributions into max distributions

2. feedforward evaluation for
maxx1,x3 p(x1, x3 | x2, x4)

3. retrieve max activations in backward pass

4. compute MAP states forX1 andX3 at input units

× ×

max

max max

× ×× ×

X1

X2

X1

X2

X3 X4 X3 X4

98/138

Determinism + decomposability = tractable MAP

E.g., for argmaxx1,x3
p(x1, x3 | x2, x4):

1. turn sum into max units and
input distributions into max distributions

2. feedforward evaluation for
maxx1,x3 p(x1, x3 | x2, x4)

3. retrieve max activations in backward pass

4. compute MAP states forX1 andX3 at input units

× ×

max

max max

× ×× ×

.66

X1

.61

X2

.2

X1

.83

X2

1.2

X3

.58

X4

1.8

X3

.77

X4

98/138

Determinism + decomposability = tractable MAP

E.g., for argmaxx1,x3
p(x1, x3 | x2, x4):

1. turn sum into max units and
input distributions into max distributions

2. feedforward evaluation for
maxx1,x3 p(x1, x3 | x2, x4)

3. retrieve max activations in backward pass

4. compute MAP states forX1 andX3 at input units

.35 .64

.49

.58 .77

.58 .77.58 .77

.66

X1

.61

X2

.2

X1

.83

X2

1.2

X3

.58

X4

1.8

X3

.77

X4

98/138

Determinism + decomposability = tractable MAP

E.g., for argmaxx1,x3
p(x1, x3 | x2, x4):

1. turn sum into max units and
input distributions into max distributions

2. feedforward evaluation for
maxx1,x3 p(x1, x3 | x2, x4)

3. retrieve max activations in backward pass

4. compute MAP states forX1 andX3 at input units

.35 .64

.49

.58 .77

.58 .77.58 .77

.66

X1

.61

X2

.2

X1

.83

X2

1.2

X3

.58

X4

1.8

X3

.77

X4

98/138

Example: Tractable ELBO

Using deterministic and decomposable PCs as expressive variational familyQ for
discrete polynomial log-densities, i.e. argmaxq∈Q Ex∼q [logw(x)] +H(q)

Closed-form computation for the entropyH (Liang et al. 2017)

Shih and Ermon, “Probabilistic Circuits for Variational Inference in Discrete Graphical Models”,
2020 99/138

Goal

Given a class of queries
can we systematically find
a class of probabilistic circuits
that is tractable for it?

100/138

A language for queries

Integral expressions that can be formed by composing these operators

+ , × , pow , log , exp and /

⇒ many divergences and information-theoretic queries

101/138

A language for queries

Integral expressions that can be formed by composing these operators

+ , × , pow , log , exp and /

⇒ many divergences and information-theoretic queries

Represented as higher-order computational graphs—pipelines—operating over circuits!
⇒ re-using intermediate transformations across queries

101/138

KLD(p || q) =
∫
val(X) p(x)× log (p(x)/q(x)) dX

p

q

/

r

log

s

×
t

∫

KLD(p || q) =
∫
val(X) p(x)× log

(
p(x) / q(x)

)
dX

p

q

/

r

log

s

×
t

∫

KLD(p || q) =
∫
val(X) p(x)× log (p(x)/q(x)) dX

p

q

/

r

log

s

×
t

∫

KLD(p || q) =
∫
val(X) p(x) × log (p(x)/q(x)) dX

p

q

/

r

log

s

×
t

∫

XENT(p || q) =
∫
p(x)× log q(x) dX

p

q

log

r

×
s

∫

Tractable operators

X1

X2

X3

× ×

X1

X1

X2

×

× X3

×

X1

X1

X2

X2

×

×

X3

X3

×

×

smooth, decomposable
compatible

107/138

Tractable operators

JX < γK

JY ≥ δK

JX ≥ γK

JY < δK

×

×

p1

p2
θ1

θ2

log
log p1(X)

JY ≥ δK

log p1(Y)

JX < γK

×

×

supp(p1)

log θ1

log p2(X)

JY < δK

log p2(Y)

JX ≥ γK

×

×

supp(p2)

log θ2

smooth, decomposable
deterministic

smooth, decomposable

107/138

SMOsmoothness

DECdecomposability

DETdeterminism

CMPcompatibility

+

p
+
q

×
p
×
q

po
wN

p
n

po
wR

p
α

/
p/
q

log
lo
g
p

exp
ex
p
p

8 4 4 4 4 4 4

8 8 8 4 8 8 8

8 8 8 4 4 4 8

8 4 4 8 4 8 8

Building an atlas of composable tractable atomic operations 107/138

p

q

log

r

×
s

∫

To perform tractable integration we need s to be smooth and decomposable…

p

q

log

r

×
s

∫

hence we need p and r to be smooth, decomposable and compatible…

p

q

log

r

×
s

∫

therefore q must be smooth, decomposable and deterministic…

p

q

log

r

×
s

∫

we can computeXENT tractably if p and q are smooth, decomposable, compatible
and q is deterministic…

compositionally derive the tractability of many more queries

Vergari et al., “A Compositional Atlas of Tractable Circuit Operations: From Simple
Transformations to Complex Information-Theoretic Queries”, 2021 111/138

and prove hardness when some input properties are not satisfied

Vergari et al., “A Compositional Atlas of Tractable Circuit Operations: From Simple
Transformations to Complex Information-Theoretic Queries”, 2021 111/138

Composable tractable sub-routines

Efficient inference algorithms in a couple lines of Julia code! 1

1https://github.com/UCLA-StarAI/circuit-ops-atlas 111/138

Next up…

1. Learning and reasoning with symbolic constraints

2. Expected predictions: handling missing values, fairness

⇒ using tractable products

X1

X2

X3

× ×

X1

X1

X2

×

× X3

×

X1

X1

X2

X2

×

×

X3

X3

×

×

smooth, decomposable
compatible

112/138

Symbolic constraints

“How can neural nets
reason and learn with
symbolic constraints
reliably and efficiently?”

113/138

When?

Ground Truth

e.g. predict shortest path in a map

114/138

When?

given x // e.g. a tile map

Ground Truth

structured output prediction (SOP) tasks

Vlastelica et al., “Differentiation of blackbox combinatorial solvers”, 2020 115/138

When?

given x // e.g. a tile map
find y∗ = argmaxy pθ(y | x) // e.g. a configurations of edges in a grid

Ground Truth

structured output prediction (SOP) tasks

Vlastelica et al., “Differentiation of blackbox combinatorial solvers”, 2020 115/138

When?

given x // e.g. a tile map
find y∗ = argmaxy pθ(y | x) // e.g. a configurations of edges in a grid

s.t. y |= K // e.g., that form a valid path

Ground Truth

structured output prediction (SOP) tasks

Vlastelica et al., “Differentiation of blackbox combinatorial solvers”, 2020 115/138

When?

given x // e.g. a tile map
find y∗ = argmaxy pθ(y | x) // e.g. a configurations of edges in a grid

s.t. y |= K // e.g., that form a valid path

// for a 12× 12 grid, 2144 states but only 1010 valid ones!
Ground Truth

structured output prediction (SOP) tasks

Vlastelica et al., “Differentiation of blackbox combinatorial solvers”, 2020 115/138

When?

given x // e.g. a feature map
find y∗ = argmaxy pθ(y | x) // e.g. labels of classes

s.t. y |= K // e.g., constraints over superclasses

K : (Ycat =⇒ Yanimal) ∧ (Ydog =⇒ Yanimal)

hierarchical multi-label classification

Giunchiglia and Lukasiewicz, “Coherent hierarchical multi-label classification networks”, 2020 116/138

When?

Ground Truth ResNet-18

neural nets struggle to satisfy validity constraints!

117/138

How?

take an unreliable neural network architecture…

118/138

How?

……and replace the last layer with
a semantic probabilistic layer

119/138

SPL

SPL

qΘ(y | g(z)) is an expressive distribution over labels

cK(x,y) encodes the constraint 1{x,y |= K}

Ahmed et al., “Semantic Probabilistic Layers for Neuro-Symbolic Learning”, 2022 120/138

SPL

SPL

p(y | x) = qΘ(y | g(z)) · cK(x,y)/Z(x)

Z(x) =
∑

y
qΘ(y | x) · cK(x,y)

Ahmed et al., “Semantic Probabilistic Layers for Neuro-Symbolic Learning”, 2022 120/138

SPL

Y1

Y2

Y1

Y2

×

×

Y3

Y3

×

×

q

g

a conditional circuit q(y;Θ = g(z))

121/138

SPL

1{Y1 = 0}

1{Y1 = 1}

1{Y2 = 0}

1{Y2 = 1}

×

×

× ×

1{Y3 = 1}

1{Y3 = 0}

× c

and a logical circuit c(y,x) encoding K

122/138

Tractable products

X1

X2

X3

× ×

X1

X1

X2

×

× X3

×

X1

X1

X2

X2

×

×

X3

X3

×

×

smooth, decomposable
compatible

exactly compute Z in time O(|q||c|)

123/138

SPL recipe

K : (Y1 = 1 =⇒ Y3 = 1)

∧ (Y2 = 1 =⇒ Y3 = 1)

1) Take any
logical constraint

124/138

SPL recipe

K : (Y1 = 1 =⇒ Y3 = 1)

∧ (Y2 = 1 =⇒ Y3 = 1)

1) Take any
logical constraint

1{Y1 = 0}

1{Y1 = 1}

1{Y2 = 0}

1{Y2 = 1}

×

×

× ×

1{Y3 = 1}

1{Y3 = 0}

× c

2) Compile it into
a constraint circuit

124/138

SPL recipe

K : (Y1 = 1 =⇒ Y3 = 1)

∧ (Y2 = 1 =⇒ Y3 = 1)

1) Take any
logical constraint

1{Y1 = 0}

1{Y1 = 1}

1{Y2 = 0}

1{Y2 = 1}

×

×

× ×

1{Y3 = 1}

1{Y3 = 0}

× c

2) Compile it into
a constraint circuit

Y1

Y2

Y1

Y2

×

×

Y3

Y3

×

×

q

g

3)Multiply it
by a circuit distribution

124/138

SPL recipe

K : (Y1 = 1 =⇒ Y3 = 1)

∧ (Y2 = 1 =⇒ Y3 = 1)

1) Take any
logical constraint

1{Y1 = 0}

1{Y1 = 1}

1{Y2 = 0}

1{Y2 = 1}

×

×

× ×

1{Y3 = 1}

1{Y3 = 0}

× c

2) Compile it into
a constraint circuit

Y1

Y2

Y1

Y2

×

×

Y3

Y3

×

×

q

g

3)Multiply it
by a circuit distribution

4) train end-to-end by sgd!
124/138

Guaranteeing consistency
Ground Truth FIL LSL SPL

cost: 39.31 cost:∞ cost:∞ cost: 45.09

cost: 57.31 cost:∞ cost:∞ cost: 58.09
125/138

Expected predictions

Reasoning about the output of a classifier or regressor f given a distribution p over the
input features

Ep[f] =

∫
val(X)

p(x)× f(x) dX

p

f

×
r

∫
126/138

Handling missing values at test time

Given a partial observationxo, what is the ex-
pected output from f ?

E
xm∼p(xm|xo)

[f(xm,xo)]

Khosravi et al., “On Tractable Computation of Expected Predictions”, 2019 127/138

Fairness analysis
using ProbabilisticCircuits
pc = load_prob_circuit(zoo_psdd_file("insurance.psdd"));
rc = load_logistic_circuit(zoo_lc_file("insurance.circuit"), 1);

q: Is the predictive model biased by gender?

groups = make_observations([["male"], ["female"]])
exps, _ = Expectation(pc, rc, groups);
println("Female : \$ $(exps[2])");
println("Male : \$ $(exps[1])");
println("Diff : \$ $(exps[2] - exps[1])");
Female : $ 14170.125469335406
Male : $ 13196.548926381849
Diff : $ 973.5765429535568

https://github.com/Juice-jl/ 128/138

https://github.com/Juice-jl/

Conclusions

Probabilistic Circuits
a grammar for structured tractable deep learning models

Building Circuits
imposing structure and learning parameters from data and prior knowledge

Advanced Reasoning
how do structure and reasoning interplay for real-world applications

130/138

m
or
e
ex

pr
es
si
ve

le
ss

ex
pr
es
si
ve

more tractable

less tractable

Circuits
Circuits

Circuits

Flows Diffusion

VAEs GANs

GMMs

HMMs

Trees
overparam.

structure

expressiveness and tractability without compromises
131/138

takeaway #2: we can learn circuits with billions of parameters

132/138

takeaway# 3: a unified framework for complex reasoning

133/138

SMOsmoothness

DECdecomposability

DETdeterminism

CMPcompatibility

+

p
+
q

×
p
×
q

po
wN

p
n

po
wR

p
α

/
p/
q

log
lo
g
p

exp
ex
p
p

8 4 4 4 4 4 4

8 8 8 4 8 8 8

8 8 8 4 4 4 8

8 4 4 8 4 8 8

takeaway# 3.1: a compositional framework for reasoning

133/138

Challenge #1
scaling tractable learning

Learn tractable models
on billions of datapoints
and thousands of features
in tractable time!

134/138

Challenge #2
more structure!

Inject and enforce
symmetries and other
real-world biases!

135/138

Challenge #3
advanced and automated reasoning

Move beyond single reasoning tasks
towards fully automated reasoning!

136/138

Readings

Probabilistic Circuits: A Unifying Framework for Tractable Probabilistic Models
starai.cs.ucla.edu/papers/ProbCirc20.pdf

Foundations of Sum-Product Networks for probabilistic modeling
tinyurl.com/w65po5d

Slides for this tutorial
nolovedeeplearning.com/slides/pc-neurips22.pdf

137/138

starai.cs.ucla.edu/papers/ProbCirc20.pdf
tinyurl.com/w65po5d
nolovedeeplearning.com/slides/pc-neurips22.pdf

Code

Juice.jl advanced logical+probabilistic inference with circuits in Julia
github.com/Juice-jl/ProbabilisticCircuits.jl

SPFlow easy and extensible python library for SPNs
github.com/SPFlow/SPFlow

138/138

github.com/SPFlow/SPFlow

Are you looking for a PhD/Postdoc?

YooJung is hiring! yj.choi@asu.edu
yoojungchoi.github.io

Antonio is hiring! avergari@ed.ac.uk
nolovedeeplearning.com/buysellexchange.html

138/138

yj.choi@asu.edu
yoojungchoi.github.io
avergari@ed.ac.uk
nolovedeeplearning.com/buysellexchange.html

References I
⊕ Darwiche, Adnan (2002). “A logical approach to factoring belief networks”. In: KR 2, pp. 409–420.

⊕ Darwiche, Adnan and Pierre Marquis (2002). “A knowledge compilation map”. In: Journal of Artificial Intelligence Research 17, pp. 229–264.

⊕ Darwiche, Adnan (2003). “A Differential Approach to Inference in Bayesian Networks”. In: J.ACM.

⊕ — (2004). “New advances in compiling CNF to decomposable negation normal form”. In: Proc. of ECAI. Citeseer, pp. 328–332.

⊕ — (2009). Modeling and Reasoning with Bayesian Networks. Cambridge.

⊕ Poon, Hoifung and Pedro Domingos (2011). “Sum-Product Networks: a New Deep Architecture”. In: UAI 2011.

⊕ Muise, Christian, Sheila A McIlraith, J Christopher Beck, and Eric I Hsu (2012). “Dsharp: fast d-DNNF compilation with sharpSAT”. In:
Canadian Conference on Artificial Intelligence. Springer, pp. 356–361.

⊕ Gens, Robert and Pedro Domingos (2013). “Learning the Structure of Sum-Product Networks”. In: Proceedings of the ICML 2013, pp. 873–880.

⊕ Rahman, Tahrima, Prasanna Kothalkar, and Vibhav Gogate (2014). “Cutset Networks: A Simple, Tractable, and Scalable Approach for Improving the Accuracy of
Chow-Liu Trees”. In: Machine Learning and Knowledge Discovery in Databases. Vol. 8725. LNCS. Springer, pp. 630–645.

⊕ Rooshenas, Amirmohammad and Daniel Lowd (2014). “Learning Sum-Product Networks with Direct and Indirect Variable Interactions”. In: Proceedings of ICML 2014.

⊕ Adel, Tameem, David Balduzzi, and Ali Ghodsi (2015). “Learning the Structure of Sum-Product Networks via an SVD-based Algorithm”. In:
Uncertainty in Artificial Intelligence.

References II
⊕ Bova, Simone, Florent Capelli, Stefan Mengel, and Friedrich Slivovsky (2015). “On compiling CNFs into structured deterministic DNNFs”. In:
International Conference on Theory and Applications of Satisfiability Testing. Springer, pp. 199–214.

⊕ Dennis, Aaron and Dan Ventura (2015). “Greedy Structure Search for Sum-product Networks”. In: IJCAI’15. Buenos Aires, Argentina: AAAI Press, pp. 932–938. isbn:
978-1-57735-738-4.

⊕ Vergari, Antonio, Nicola Di Mauro, and Floriana Esposito (2015). “Simplifying, Regularizing and Strengthening Sum-Product Network Structure Learning”. In:
ECML-PKDD 2015.

⊕ Friesen, Abram L and Pedro Domingos (2016). “Submodular Sum-product Networks for Scene Understanding”. In.

⊕ Jaini, Priyank, Abdullah Rashwan, Han Zhao, Yue Liu, Ershad Banijamali, Zhitang Chen, and Pascal Poupart (2016). “Online Algorithms for Sum-Product Networks with
Continuous Variables”. In: Probabilistic Graphical Models - Eighth International Conference, PGM 2016, Lugano, Switzerland, September 6-9, 2016. Proceedings,
pp. 228–239. url: http://jmlr.org/proceedings/papers/v52/jaini16.html.

⊕ Peharz, Robert, Robert Gens, Franz Pernkopf, and Pedro M. Domingos (2016). “On the Latent Variable Interpretation in Sum-Product Networks”. In:
IEEE Transactions on Pattern Analysis and Machine Intelligence PP, Issue 99. url: http://arxiv.org/abs/1601.06180.

⊕ Rashwan, Abdullah, Han Zhao, and Pascal Poupart (2016). “Online and Distributed Bayesian Moment Matching for Parameter Learning in Sum-Product Networks”. In:
Proceedings of the 19th International Conference on Artificial Intelligence and Statistics, pp. 1469–1477.

⊕ Yuan, Zehuan, Hao Wang, Limin Wang, Tong Lu, Shivakumara Palaiahnakote, and Chew Lim Tan (2016). “Modeling spatial layout for scene image understanding via a
novel multiscale sum-product network”. In: Expert Systems with Applications 63, pp. 231–240.

http://jmlr.org/proceedings/papers/v52/jaini16.html
http://arxiv.org/abs/1601.06180

References III
⊕ Zhao, Han, Tameem Adel, Geoff Gordon, and Brandon Amos (2016). “Collapsed Variational Inference for Sum-Product Networks”. In:
In Proceedings of the 33rd International Conference on Machine Learning. Vol. 48.

⊕ Lagniez, Jean-Marie and Pierre Marquis (2017). “An Improved Decision-DNNF Compiler.”. In: IJCAI. Vol. 17, pp. 667–673.

⊕ Liang, Yitao and Guy Van den Broeck (Aug. 2017). “Towards Compact Interpretable Models: Shrinking of Learned Probabilistic Sentential Decision Diagrams”. In:
IJCAI 2017 Workshop on Explainable Artificial Intelligence (XAI). url: http://starai.cs.ucla.edu/papers/LiangXAI17.pdf.

⊕ Butz, Cory J, Jhonatan S Oliveira, André E Santos, André L Teixeira, Pascal Poupart, and Agastya Kalra (2018). “An Empirical Study of Methods for SPN Learning and
Inference”. In: International Conference on Probabilistic Graphical Models, pp. 49–60.

⊕ Di Mauro, Nicola, Floriana Esposito, Fabrizio Giuseppe Ventola, and Antonio Vergari (2018). “Sum-Product Network structure learning by efficient product nodes
discovery”. In: Intelligenza Artificiale 12.2, pp. 143–159.

⊕ Jaini, Priyank, Amur Ghose, and Pascal Poupart (2018). “Prometheus: Directly Learning Acyclic Directed Graph Structures for Sum-Product Networks”. In:
International Conference on Probabilistic Graphical Models, pp. 181–192.

⊕ Molina, Alejandro, Antonio Vergari, Nicola Di Mauro, Sriraam Natarajan, Floriana Esposito, and Kristian Kersting (2018). “Mixed Sum-Product Networks: A Deep
Architecture for Hybrid Domains”. In: AAAI.

⊕ Oztok, Umut and Adnan Darwiche (2018). “An exhaustive DPLL algorithm for model counting”. In: Journal of Artificial Intelligence Research 62, pp. 1–32.

⊕ Khosravi, Pasha, YooJung Choi, Yitao Liang, Antonio Vergari, and Guy Van den Broeck (2019). “On Tractable Computation of Expected Predictions”. In:
Advances in Neural Information Processing Systems, pp. 11167–11178.

http://starai.cs.ucla.edu/papers/LiangXAI17.pdf

References IV
⊕ Molina, Alejandro, Antonio Vergari, Karl Stelzner, Robert Peharz, Pranav Subramani, Nicola Di Mauro, Pascal Poupart, and Kristian Kersting (2019). “SPFlow: An easy and
extensible library for deep probabilistic learning using sum-product networks”. In: arXiv preprint arXiv:1901.03704.

⊕ Peharz, Robert, Antonio Vergari, Karl Stelzner, Alejandro Molina, Xiaoting Shao, Martin Trapp, Kristian Kersting, and Zoubin Ghahramani (2019). “Random sum-product
networks: A simple but effective approach to probabilistic deep learning”. In: Proceedings of UAI.

⊕ Salman, Hadi, Jerry Li, Ilya Razenshteyn, Pengchuan Zhang, Huan Zhang, Sebastien Bubeck, and Greg Yang (2019). “Provably robust deep learning via adversarially
trained smoothed classifiers”. In: Advances in Neural Information Processing Systems 32.

⊕ Shao, Xiaoting, Alejandro Molina, Antonio Vergari, Karl Stelzner, Robert Peharz, Thomas Liebig, and Kristian Kersting (2019). “Conditional Sum-Product Networks:
Imposing Structure on Deep Probabilistic Architectures”. In: arXiv preprint arXiv:1905.08550.

⊕ Trapp, Martin, Robert Peharz, Hong Ge, Franz Pernkopf, and Zoubin Ghahramani (2019). “Bayesian Learning of Sum-Product Networks”. In:
Advances in neural information processing systems (NeurIPS).

⊕ Vergari, Antonio, Alejandro Molina, Robert Peharz, Zoubin Ghahramani, Kristian Kersting, and Isabel Valera (2019). “Automatic Bayesian density analysis”. In:
Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 33, pp. 5207–5215.

⊕ Correia, Alvaro, Robert Peharz, and Cassio P de Campos (2020). “Joints in random forests”. In: Advances in neural information processing systems 33, pp. 11404–11415.

⊕ Giunchiglia, Eleonora and Thomas Lukasiewicz (2020). “Coherent hierarchical multi-label classification networks”. In: NeurIPS 33, pp. 9662–9673.

⊕ Peharz, Robert, Steven Lang, Antonio Vergari, Karl Stelzner, Alejandro Molina, Martin Trapp, Guy Van den Broeck, Kristian Kersting, and Zoubin Ghahramani (2020).
“Einsum Networks: Fast and Scalable Learning of Tractable Probabilistic Circuits”. In: ICML.

References V
⊕ Shih, Andy and Stefano Ermon (2020). “Probabilistic Circuits for Variational Inference in Discrete Graphical Models”. In: NeurIPS.

⊕ Vlastelica, Marin, Anselm Paulus, Vit Musil, Georg Martius, and Michal Rolinek (2020). “Differentiation of blackbox combinatorial solvers”. In: ICLR.

⊕ Choi, YooJung, Antonio Vergari, and Guy Van den Broeck (2021). “Probabilistic Circuits: A Unifying Framework for Tractable Probabilistic Modeling”. In: Technical Report.

⊕ Subramani, Pranav Shankar, Gautam Kamath, Robert Peharz, et al. (2021). “Exact and Efficient Adversarial Robustness with Decomposable Neural Networks”. In:
The 4th Workshop on Tractable Probabilistic Modeling.

⊕ Vergari, Antonio, YooJung Choi, Anji Liu, Stefano Teso, and Guy Van den Broeck (2021). “A Compositional Atlas of Tractable Circuit Operations: From Simple
Transformations to Complex Information-Theoretic Queries”. In: NeurIPS. arXiv: 2102.06137 [stat.ML].

⊕ Yu, Zhongjie, Fabrizio G Ventola, and Kristian Kersting (2021). “Whittle Networks: A Deep Likelihood Model for Time Series”. In:
Proceedings of the 38th International Conference on Machine Learning. Ed. by Marina Meila and Tong Zhang. Vol. 139. Proceedings of Machine Learning Research. PMLR,
pp. 12177–12186. url: https://proceedings.mlr.press/v139/yu21c.html.

⊕ Ahmed, Kareem, Stefano Teso, Kai-Wei Chang, Guy Van den Broeck, and Antonio Vergari (2022a). “Semantic Probabilistic Layers for Neuro-Symbolic Learning”. In:
arXiv preprint arXiv:2206.00426.

⊕ Ahmed, Kareem, Eric Wang, Kai-Wei Chang, and Guy Van den Broeck (2022b). “Neuro-symbolic entropy regularization”. In: Uncertainty in Artificial Intelligence. PMLR,
pp. 43–53.

⊕ Dang, Meihua, Anji Liu, and Guy Van den Broeck (2022). “Sparse Probabilistic Circuits via Pruning and Growing”. In: NeurIPS. url:
http://starai.cs.ucla.edu/papers/DangNeurIPS22.pdf.

https://arxiv.org/abs/2102.06137
https://proceedings.mlr.press/v139/yu21c.html
http://starai.cs.ucla.edu/papers/DangNeurIPS22.pdf

References VI

⊕ Liu, Anji, Honghua Zhang, and Guy Van den Broeck (2022). “Scaling Up Probabilistic Circuits by Latent Variable Distillation”. In: arXiv preprint.

	Probabilistic Circuits
	Building Probabilistic Circuits
	Origins: Compilation
	Parameter Learning
	Structure Learning
	How to construct and learn RGs?
	Advanced Reasoning with Probabilistic Circuits
	Conclusions
	References

