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Why?

healthcare loan grants self-driving cars

ML models are everywhere…!
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Why?

healthcare loan grants self-driving cars

neural networks are everywhere…!
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Why?

struggle with uncertainty be unfair be not robust

but they can…
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Why?

q1

“What is the probability of a
treatment for a patient with
unavailable records?”

q2

“How fair is the predic-
tion is a certain protected
attribute changes?”

q3
“Can we certify no adver-
sarial examples exist?”

how can we reason about their behavior?
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Why

q1

“What is the probability of a
treatment for a patient with
unavailable records?”

q2

“How fair is the predic-
tion is a certain protected
attribute changes?”

q3
“Can we certify no adver-
sarial examples exist?”

reliably and efficiently?
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Why?

“How can we design and learn
deep learning models
that can reliably reason?”
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Why?

“How can we design and learn
deep learning models
that can reliably reason?”

expressive and flexible computational graphs
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Why?

“How can we design and learn
deep learning models
that can reliably reason?”

seamlessly integrate probabilistic and logical inference

9/138



Why?

“How can we design and learn
deep learning models
that can reliably reason?”

exact and efficient inference
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How?

structure!
structure!
structure!
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How?

structure!
structure!
structure!

impose structure over computational graphs
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How?

structure!
structure!
structure!

exploit structure in the reasoning task
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How?

structure!
structure!
structure!

inject prior background knowledge
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Probabilistic Circuits
a grammar for structured tractable deep learning models
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Probabilistic Circuits
a grammar for structured tractable deep learning models

Building Circuits
imposing structure and learning parameters from data and prior knowledge
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Probabilistic Circuits
a grammar for structured tractable deep learning models

Building Circuits
imposing structure and learning parameters from data and prior knowledge

Advanced Reasoning
how do structure and reasoning interplay for real-world applications
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Probabilistic Circuits



Reasoning about ML models

q1

“What is the probability of a
treatment for a patient with
unavailable records?”

q2

“How fair is the predic-
tion is a certain protected
attribute changes?”

q3
“Can we certify no adver-
sarial examples exist?”
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Reasoning about ML models

q1

∫
p(xo,xm)dXm

(missing values)
q2

Exc∼p(Xc|Xs=0) [f0(xc)]−
Exc∼p(Xc|Xs=1) [f1(xc)]
(fairness)

q3 Ee∼N (0,σ2ID) [f(x+ e)]
(adversarial robust.)

…in the language of probabilities
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Inspecting behaviors

q1

∫
p(xo,xm)dXm

(missing values)
q2

Exc∼p(Xc|Xs=0) [f0(xc)]−
Exc∼p(Xc|Xs=1) [f1(xc)]
(fairness)

q3 Ee∼N (0,σ2ID) [f(x+ e)]
(adversarial robust.)

it is crucial we compute them exactly and in polytime!
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Inspecting behaviors

q1

∫
p(xo,xm)dXm

(missing values)
q2

Exc∼p(Xc|Xs=0) [f0(xc)]−
Exc∼p(Xc|Xs=1) [f1(xc)]
(fairness)

q3 Ee∼N (0,σ2ID) [f(x+ e)]
(adversarial robust.)

it is crucial we compute them tractably!
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Goal

Given a reasoning task
can we design
a class of expressive models
that is tractable for it?

19/138



Goal

Given a reasoning task
can we design
a class of deep computational graphs
that is tractable for it?
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more tractable

less tractable

Flows Diffusion

VAEs GANs

Expressive models are not much tractable…
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more tractable

less tractable

Flows Diffusion

VAEs GANs

GMMs

HMMs

Trees

Tractable models are not that expressive…
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less tractable

Circuits
Circuits

Circuits

Flows Diffusion

VAEs GANs

GMMs

HMMs

Trees

Circuits can be both expressive and tractable!
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less tractable

Circuits
Circuits

Circuits

Flows Diffusion

VAEs GANs

GMMs

HMMs

Trees

Start simple…
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less tractable

Circuits
Circuits

Circuits

Flows Diffusion

VAEs GANs

GMMs

HMMs

Trees
overparam.

then make it more expressive!
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more tractable

less tractable

Circuits
Circuits

Circuits

Flows Diffusion

VAEs GANs

GMMs

HMMs

Trees
overparam.

structure

impose structure!
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GMMs
as computational graphs

−10 −5 0 5 10

X1

0.00

0.05

0.10

0.15

0.20

0.25

p(
X

1)

p(X) = w1 · p1(X1)+w2 · p2(X1)

⇒ translating inference to data structures…
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GMMs
as computational graphs

X1

0.8

0.2

p(X1) = 0.2·p1(X1)+0.8·p2(X1)

⇒ …e.g., as a weighted sum unit over Gaussian input distributions
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GMMs
as computational graphs

.06

.21

1 0.09

0.8

0.2

p(X = 1) =0.2 · p1(X1 = 1)

+0.8 · p2(X1 = 1)

⇒ inference = feedforward evaluation
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GMMs
as computational graphs

X1

X1

0.8

0.2

A simplified notation:

⇒ scopes attached to inputs
⇒ edge directions omitted
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GMMs
as computational graphs

p(X) =w1 · p1(XL
1) · p1(XR

1 )+

w2 · p2(XL
2) · p2(XR

2 )

⇒ local factorizations…
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GMMs
as computational graphs

XR
2

XL
2

XR
1

XL
1

×

×

w1

w2

p(X) =w1 · p1(XL
1) · p1(XR

1 )+

w2 · p2(XL
2) · p2(XR

2 )

⇒ …are product units
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HMMs
as computational graphs

Z1

X1

Z2

X2

. . .

X2

X2

. . .

. . .

×

×

X1

X1

×

×
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Probabilistic Circuits (PCs)
A grammar for tractable computational graphs

X1
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I. A simple tractable function is a circuit



Probabilistic Circuits (PCs)
A grammar for tractable computational graphs

X1 X1 X1

w1 w2
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I. A simple tractable function is a circuit

II. A weighted combination of circuits is a circuit



Probabilistic Circuits (PCs)
A grammar for tractable computational graphs

X1 X1 X1

w1 w2

×

X1 X2

31/138

I. A simple tractable function is a circuit

II. A weighted combination of circuits is a circuit

III. A product of circuits is a circuit



Probabilistic Circuits (PCs)
A grammar for tractable computational graphs

X1 X1 X1

w1 w2

×

X1 X2

×

X1 X2

×

X1 X2

w1 w2
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Probabilistic Circuits (PCs)
A grammar for tractable computational graphs

X1 X1 X1

w1 w2

×

X1 X2

×

X1 X2

×

X1 X2

w1 w2

× ×

× ×× ×

X1

X2

X1

X2

X3 X4 X3 X4
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Building PCs in Python with SPFlow

import spn.structure.leaves.parametric.Parametric as param
from param import Categorical , Gaussian

PC = 0.4 * (Categorical(p=[0.2, 0.8], scope=0) *
(0.3 * (Gaussian(mean=1.0, stdev=1.0, scope=1) *

Categorical(p=[0.4, 0.6], scope=2))
+ 0.7 * (Gaussian(mean=-1.0, stdev=1.0, scope=1) *

Categorical(p=[0.6, 0.4], scope=2)))) \
+ 0.6 * (Categorical(p=[0.2, 0.8], scope=0) *

Gaussian(mean=0.0, stdev=0.1, scope=1) *
Categorical(p=[0.4, 0.6], scope=2))

Molina et al., “SPFlow: An easy and extensible library for deep probabilistic learning using
sum-product networks”, 2019 32/138



Probabilistic queries = feedforward evaluation

p(X1 = −1.85, X2 = 0.5, X3 = −1.3, X4 = 0.2)
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Probabilistic queries = feedforward evaluation

p(X1 = −1.85, X2 = 0.5, X3 = −1.3, X4 = 0.2)
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Probabilistic queries = feedforward evaluation

p(X1 = −1.85, X2 = 0.5, X3 = −1.3, X4 = 0.2) = 0.75
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Tractable likelihoods

modeling time, frequencies, latent spaces…

Yu et al., “Whittle Networks: A Deep Likelihood Model for Time Series”, 2021 34/138



…why PCs?

1. A grammar for tractable models
One formalism to represent many models. #GMMs #HMMs #Trees #XGBoost, …
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…why PCs?

1. A grammar for tractable models
One formalism to represent many models. #GMMs #HMMs #Trees #XGBoost, …

2. Expressiveness
Stacking millions latent variables. #hierachical #mixtures #polynomials

35/138



How expressive?

competitive with Flows and VAEs!

Dang et al., “Sparse Probabilistic Circuits via Pruning and Growing”, 2022 36/138



How scalable?

up to billions of parameters

Liu et al., “Scaling Up Probabilistic Circuits by Latent Variable Distillation”, 2022 37/138



Just sum, products and distributions?

X1

X2

X3

X4

X5

X6

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

just arbitrarily compose them like a neural network!
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Just sum, products and distributions?

X1

X2

X3

X4

X5

X6

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

just arbitrarily compose them like a neural network!
⇒ structural properties needed for tractability
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…why PCs?

1. A grammar for tractable models
One formalism to represent many models. #GMMs #HMMs #Trees #XGBoost, …

2. Increase expressiveness
Stacking millions latent variables. #hierachical #mixtures #polynomials

3. Tractability == Structural Properties !!!

Exact computations for certain reasoning tasks are certified by verifying certain structural
properties. #marginals #expectations #MAP, …

39/138



Which structural properties
for complex reasoning

???
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Structural properties

smoothness

decomposability

compatibility

determinism

Vergari et al., “A Compositional Atlas of Tractable Circuit Operations: From Simple
Transformations to Complex Information-Theoretic Queries”, 2021 41/138



Structural properties

smoothness

decomposability

compatibility

determinism

the inputs of sum units are defined over the same variables

X1 X1

w1 w2

smooth circuit

X1 X2

w1 w2

non-smooth circuit

Vergari et al., “A Compositional Atlas of Tractable Circuit Operations: From Simple
Transformations to Complex Information-Theoretic Queries”, 2021 41/138



Structural properties

smoothness

decomposability

compatibility

determinism

the inputs of prod units are defined over disjoint variable sets

×

X1 X2 X3

decomposable circuit

×

X1 X1 X3

non-decomposable circuit

Vergari et al., “A Compositional Atlas of Tractable Circuit Operations: From Simple
Transformations to Complex Information-Theoretic Queries”, 2021 41/138



smooth + decomposable circuits = …

allow for the tractable computation of arbitrary integrals

p(y) =

∫
val(Z)

p(z,y) dZ, ∀Y ⊆ X, Z = X \Y

⇒ sufficient and necessary conditions for a
single feedforward evaluation

⇒ can marginalize out any missing values

Choi et al., “Probabilistic Circuits: A Unifying Framework for Tractable Probabilistic Modeling”,
2021 42/138



Probabilistic queries = feedforward evaluation

p(X1 = −1.85, X4 = 0.2)
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Probabilistic queries = feedforward evaluation

p(X1 = −1.85, X4 = 0.2)
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smooth + decomposable circuits = …

Computing arbitrary integrations (or summations)
⇒ linear in circuit size!

E.g., suppose we want to compute Z:∫
p(x)dx

44/138



smooth + decomposable circuits = …

If p(x) =
∑

i wipi(x), (smoothness):

∫
p(x)dx =

∫ ∑
i

wipi(x)dx =

=
∑
i

wi

∫
pi(x)dx

⇒ integrals are “pushed down” to inputs

× ×

× ×× ×

X1

X2

X1

X2

X3 X4 X3 X4
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smooth + decomposable circuits = …

If p(x,y, z) = p(x)p(y)p(z), (decomposability):

∫ ∫ ∫
p(x,y, z)dxdydz =

=

∫ ∫ ∫
p(x)p(y)p(z)dxdydz =

=

∫
p(x)dx

∫
p(y)dy

∫
p(z)dz

⇒ integrals decompose into easier ones

× ×

× ×× ×

X1

X2

X1

X2

X3 X4 X3 X4
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smooth + decomposable circuits = …

Analogously, for arbitrary conditional queries:

p(q | e) = p(q, e)

p(e)

1. evaluate p(q, e) ⇒ one feedforward pass

2. evaluate p(e) ⇒ another feedforward pass

⇒ …still linear in circuit size!

× ×

× ×× ×

X1

X2

X1

X2

X3 X4 X3 X4
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Tractable inference on PCs
Einsum networks

Peharz et al., “Einsum Networks: Fast and Scalable Learning of Tractable Probabilistic Circuits”,
2020 46/138

Original Missing Conditional sample



Which structural properties
for complex reasoning

smooth + decomposable
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Which structural properties
for complex reasoning

smooth + decomposable ??????
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Adversarial smoothing

Certify robustness for inputs x by
smoothing it by computing

gσ(x) = Ee∼N (0,σI) [f(x+ e)]

Subramani et al., “Exact and Efficient Adversarial Robustness with Decomposable Neural
Networks”, 2021 49/138



Adversarial smoothing

Certify robustness for inputs x by
smoothing it by computing

gσ(x) = Ee∼N (0,σI) [f(x+ e)]

Subramani et al., “Exact and Efficient Adversarial Robustness with Decomposable Neural
Networks”, 2021 49/138



Adversarial smoothing

Certify robustness for inputs x by
smoothing it by computing

gσ(x) = Ee∼N (0,σI) [f(x+ e)]

in a single feed-forward evaluation, if
we impose some structure over a
computational graph

Subramani et al., “Exact and Efficient Adversarial Robustness with Decomposable Neural
Networks”, 2021 49/138



decomposable circuits = tractable adv smoothing

If f(x) =
∑

i wif i(x):

∫
N (e)f(x+ e)de =

∑
i

wiEN (e)[f i(x+ e)]

⇒ expectations are “pushed down” to inputs

× ×

× ×× ×

X1

X2

X1

X2

X3 X4 X3 X4
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decomposable circuits = tractable adv smoothing

If f(x,y, z) = f(x)f(y)f(z), (decomposability):

∫
N (ex)N (ey)N (ey)f(x+ ex,y + ey, z+ ez)dexdeydez

Eex [f(x+ ex)] · Eey [f(y + ey)] · Eez [f(z+ ez)]

⇒ expectations decompose into easier ones

× ×

× ×× ×

X1

X2

X1

X2

X3 X4 X3 X4
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Which structural properties
for complex reasoning

smooth + decomposable decomposable
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Which structural properties
for complex reasoning

smooth + decomposable ??????? decomposable
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General expectations

Integrals involving two or more functions:∫
p(x)f(x)dX

53/138



General expectations

Integrals involving two or more functions:∫
p(x)f(x)dX

represent both p and f as circuits…but with
which structural properties? E.g.,
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General expectations

Integrals involving two or more functions:∫
p(x)f(x)dX

represent both p and f as circuits…but with
which structural properties? E.g.,

Exc∼p(Xc|Xs=0) [f0(xc)]− Exc∼p(Xc|Xs=1) [f1(xc)]

53/138



Structural properties

smoothness

decomposability

compatibility

determinism

Vergari et al., “A Compositional Atlas of Tractable Circuit Operations: From Simple
Transformations to Complex Information-Theoretic Queries”, 2021 54/138



Structural properties

smoothness

decomposability

compatibility

determinism

X1

X1

X2

X2

×

×

X3

X3

×

×

X2

X1

×

X3

×

compatible circuits

Vergari et al., “A Compositional Atlas of Tractable Circuit Operations: From Simple
Transformations to Complex Information-Theoretic Queries”, 2021 54/138



Structural properties

smoothness

decomposability

compatibility

determinism

X3

X2X2
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X2
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X3
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non-compatible circuits

Vergari et al., “A Compositional Atlas of Tractable Circuit Operations: From Simple
Transformations to Complex Information-Theoretic Queries”, 2021 54/138



Tractable products

X1

X2

X3

× ×

X1

X1

X2

×

× X3

×

X1

X1

X2

X2

×

×

X3

X3

×

×

smooth, decomposable
compatible

exactly compute
∫
p(x)f (x)dX in time O(|p||f |)

Vergari et al., “A Compositional Atlas of Tractable Circuit Operations: From Simple
Transformations to Complex Information-Theoretic Queries”, 2021 55/138



Which structural properties
for complex reasoning

smooth + decomposable smooth + compatible decomposable
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Structural properties

smoothness

decomposability

compatibility

determinism

stay tuned!

Vergari et al., “A Compositional Atlas of Tractable Circuit Operations: From Simple
Transformations to Complex Information-Theoretic Queries”, 2021 57/138



Which structural properties
for complex reasoning

reason with constraints expected predictions computing uncertainties
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Circuits
Circuits

Circuits

Flows Diffusion

VAEs GANs

GMMs

HMMs

Trees
overparam.

structure

structure + expressiveness
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Building Probabilistic Circuits
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Origins: Compilation



Knowledge compilation
Tractable Boolean circuits (Darwiche et al. 2002)

Compile logic prior knowledge into a propositional formula

Natural representation: deep logic circuits (negational normal form, NNF)

Equipped with structural properties such as decomposability, smoothness,
determinism, etc., corresponding to various tractable inference routines (SAT,
model counting, entailment, equivalence, …)

Semantic Probabilistic Layers
(Ahmed et al. 2022a)

All cats are animals
All dogs are animals
… 63/138



Compiling probabilistic graphical models
Arithmetic circuits (Darwiche 2002, 2003, 2009)

Compile a given Bayesian network into an arithmetic circuit—syntactically
equivalent to smooth, decomposable and deterministic PCs

Either via logic encoding of Bayesian network + knowledge compilation

Or record “execution trace” (sum and product operations) of traditional inference
algorithms (junction tree, variable elimination)

Z1

X1

Z2

X2

. . .

X2

X2

. . .

. . .

×

×

X1

X1

×

×
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Compilation
Selected references

Logic circuits, interplay between structural properties and tractable reasoning
(Darwiche et al. 2002)

Converting probabilistic graphical models via knowledge compilation
(Darwiche 2002)

Logic circuit compilers
(Darwiche 2004; Muise et al. 2012; Bova et al. 2015; Lagniez et al. 2017; Oztok et al. 2018)

Neuro-symbolic models using logic circuits
(Ahmed et al. 2022a,b)
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Parameter Learning



Gradient descent (of course)

PCs are computational graphs

Hence we can just learn them as any other neural net using SGD

Use re-parameterization if parameters should satisfy constraints:
soft-max for sum-weights (non-negative, sum-to-one)
soft-plus for variances
low-rank plus diagonal for covariance matrices

Allows for conditional distributions

67/138



Conditional PCs
(Shao et al. 2019)

68/138



Maximum likelihood (frequentist)

PCs can be interpreted as hierarchical latent variable models, where each sum node
corresponds to a discrete latent variable (Peharz et al. 2016). This allows to perform
classical maximum-likelihood estimation.
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Closed-form maximum likelihood

When the circuit is deterministic, there is even an closed-form ML solution, which is
incredible fast:

julia> using ProbabilisticCircuits;
julia> data, structure = load(...);
julia> num_examples(data)
17412
julia> num_edges(structure)
270448
julia> @btime estimate_parameters(structure , data);

63.585 ms (1182350 allocations: 65.97 MiB)

Custom SIMD and CUDA kernels to parallelize over layers and training examples.
https://github.com/Juice-jl/ 70/138

https://github.com/Juice-jl/


Expectation-Maximization

When the PC is not deterministic, we can still apply expectation-maximization (Peharz

et al. 2016). EM can piggy-back on autodfiff:
train_x , valid_x , test_x = get_mnist_images([7])

graph = Graph.poon_domingos_structure(shape=(28,28), delta=[7])
args = EinsumNetwork.Args(num_var=train_x.shape[1], num_dims=1,

num_classes=1, num_sums=28,
num_input_distributions=28,
exponential_family=EinsumNetwork.BinomialArray ,
exponential_family_args={'N':255},
online_em_frequency=1, online_em_stepsize=0.05)

PC = EinsumNetwork.EinsumNetwork(graph, args)
PC.initialize()
PC.to('cuda')

https://github.com/cambridge-mlg/EinsumNetworks 71/138
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Expectation-Maximization

for epoch_count in range(10):
train_ll , valid_ll , test_ll = compute_loglikelihood()
start_t = time.time()

for idx in get_batches(train_x , 100):
outputs = PC.forward(train_x[idx, :])
log_likelihood = EinsumNetwork.log_likelihoods(outputs).sum()
log_likelihood.backward()
PC.em_process_batch()

print_performance(epoch_count , train_ll , valid_ll , test_ll , time.time() - start_t)

https://github.com/cambridge-mlg/EinsumNetworks 72/138
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Expectation-Maximization

Peharz et al., “Einsum Networks: Fast and Scalable Learning of Tractable Probabilistic Circuits”,
2020 73/138



Bayesian parameter learning

Formulate a prior p(w,θ) over sum-weights and parameters of input units. Then
perform posterior inference:

p(w,θ|D) ∝ p(w,θ) p(D|w,θ)

Moment matching (oBMM) (Jaini et al. 2016; Rashwan et al. 2016)

Collapsed variational inference algorithm (Zhao et al. 2016)

Gibbs sampling (Trapp et al. 2019; Vergari et al. 2019)
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Structure Learning



Region graphs
Laying out the PC structure on a high level

Region graphs (RGs) describe decompositional structure

RGs are bipartite, directed graphs containing regions (R) and partitions (P )

Input and output nodes of the RG are regions

Regions have a scope (receptive field), denoted as sc(R) ⊆ X

For every partition P it holds that

sc(Rout) =
∪

Rin∈ inputs(P)

sc(Rin)

sc(R′) ∩ sc(R′′) = ∅, R′ ̸= R′′ ∈ inputs(P)
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Example region graph

77/138

(Here, every partition has 2 input regions.
This is often assumed, but not necessary.)



From region graphs to PCs
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From region graphs to PCs
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Equip each input region with non-linear units
ϕ1, . . . , ϕK



From region graphs to PCs
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Equip each internal region with sum nodes



From region graphs to PCs
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Often, output region has only a single sum



From region graphs to PCs
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Equip partitions with products, combining units
in input regions in all possible ways



From region graphs to PCs
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Equip partitions with products, combining units
in input regions in all possible ways



From region graphs to PCs

78/138

Connect products to sum units above



From region graphs to PCs

Equip each input region (leaf)R withK units ϕ1, . . . , ϕK , which are non-linear
functions over sc(R). Usually, ϕ1, . . . , ϕK are probability densities. K can be
different for each input region.

Equip each other region withK sum units. K can be different for each internal
region. Often, for the root regionK = 1, when PC is used as density estimator.

Equip each partitionP with as many products as there are combinations of units in
the input regions toP , selecting one unit from each region. Formally, ifP has input
regionsR1,R2 . . . ,RI , insert one product

∏I
i=1 ui for each

(u1, u2, . . . , uI) ∈ R1 ×R2 × · · · × RI .

Connect each
∏I

i=1 ui inP to all sum units in the output regions ofP .
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From region graphs to PCs

Resulting PC has alternating sum and product units (not a strong constraint)

We can easily scale the PC (overparameterize, increase expressivity) by equipping
regions with more units

RGs can be seen as a vectorized version of PCs – each region and partition can be
seen as as a module

Resulting PC will be smooth and decomposable, i.e., we can integrate, marginalize,
and take conditionals

After the PC has been constructed, we might discard the RG

80/138



Scaling up image models
Latent Variable Distillation

Liu et al., “Scaling Up Probabilistic Circuits by Latent Variable Distillation”, 2022 81/138



How to construct and learn RGs?



Random regions graphs
The “no-learning” option (Peharz et al. 2019)

Generating a random region graph, by recursively splittingX into two random parts:
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Image-tailored circuit structure
“Recursive image slicing” (Poon et al. 2011)

Images yield a natural region graph by using axis-aligned splits:

Start with the full image (=output region)

Define partitions by applying horizontal and vertical splits

Recurse on the newly generated sub-images (internal regions)

Structure somewhat reminiscent to convolutions

Generates RGs which are “true DAGs,” i.e. regions get re-used
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Generative modeling
Inpainting

86/138

(Peharz et al. 2020)



Adversarial smoothing

Salman et al. 2019 showed that smoothing a classifier f with noise delivers strong
guarantees on the non-existence of adversarial examples

Specifically, if the output of f is bounded, then the smoothed classifier

f̄(x) = Eϵ∼N (0,σI) [f(x+ ϵ)]

will be Lipschitz, guaranteeing the non-existence of adversarial examples within a
certain ℓ2-ball around x (depending on the class margin and σ)

How to compute f̄(x) for neural networks? Monte Carlo seems to only solution,
which is never exact and requiresmany evaluations for a single test sample

87/138



Adversarial smoothing
Exact smoothing with DecoNets (Subramani et al. 2021)

Using image circuits with shallow neural networks as inputs (“DecoNets”) delivers
competitive image classifiers which allow exact probabilistic smoothing.
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Data-driven structure learning
“Recursive data slicing” (Gens et al. 2013)

89/138

Expand regions with clustering



Data-driven structure learning
“Recursive data slicing” (Gens et al. 2013)
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Number of clusters = number of partitions



Data-driven structure learning
“Recursive data slicing” (Gens et al. 2013)
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Try to find independent groups of variables
(e.g. independence tests)



Data-driven structure learning
“Recursive data slicing” (Gens et al. 2013)
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Data-driven structure learning
“Recursive data slicing” (Gens et al. 2013)

89/138

Single variable



Data-driven structure learning
“Recursive data slicing” (Gens et al. 2013)
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Single variable→ input region



Data-driven structure learning
“Recursive data slicing” (Gens et al. 2013)
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Expand regions with clustering



Data-driven structure learning
“Recursive data slicing” (Gens et al. 2013)

89/138

Number of clusters = number of partitions

And so on…



Data-driven structure learning
“Recursive data slicing” (Gens et al. 2013)

89/138

Stopping conditions: minimal number
of features, samples, depth, …

Clustering ratios also deliver (initial)
parameters

Smooth & Decomposable Circuits

Tractable integration



LearnSPN
Selected references

ID-SPN (Rooshenas et al. 2014)

LearnSPN-b/T/B (Vergari et al. 2015)

For heterogeneous data (Molina et al. 2018)

Using k-means (Butz et al. 2018) or SVD splits (Adel et al. 2015)

Learning DAGs (Dennis et al. 2015; Jaini et al. 2018)

Approximating independence tests (Di Mauro et al. 2018)
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Cutset networks
Besides clustering, decision tree learning can be used as PC learner. Cutset networks,
decision trees over simple probabilistic models (Chow-Liu trees) (Rahman et al. 2014):

Cutset networks can easily be converted into smooth, decomposable and
deterministic PCs. 91/138



Decision trees as PCs
Also vanilla decision tree learners can be used to learn PCs, by augmenting the leaves
with distributions over inputs (Correia et al. 2020). Allows to treatmissing features and
outlier detection.
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Advanced Reasoning with
Probabilistic Circuits



Reasoning about ML models

q1

“What is the probability of a
treatment for a patient with
unavailable records?”

q2

“How fair is the predic-
tion is a certain protected
attribute changes?”

q3
“Can we certify no adver-
sarial examples exist?”

∫
p(xo,xm)dXm

Exc∼p(Xc|Xs=0) [f0(xc)]−
Exc∼p(Xc|Xs=1) [f1(xc)]

Ee∼N (0,σ2ID) [f(x+ e)]

95/138



Maximum-a-posteriori (MAP) Inference
aka Most probable explanation (MPE)

E.g., multi-label classification: what are the most likely labels y for an input x?

argmax
y

p(y | x)

E.g., image segmentation: what is the most likely latent space for the given pixels?

Yuan et al., “Modeling spatial layout for scene image understanding via a novel multiscale
sum-product network”, 2016
Friesen and Domingos, “Submodular Sum-product Networks for Scene Understanding”, 2016 96/138



Determinism
aka support-decomposability

A sum unit is deterministic if its inputs have disjoint supports

×

X1 ≤ θ X2

×

X1 > θ X2

w1 w2

deterministic circuit

×

X1 X2

×

X1 X2

w1 w2

non-deterministic circuit

Darwiche and Marquis, “A knowledge compilation map”, 2002 97/138



Determinism + decomposability = tractable MAP

Computing maximization with arbitrary evidence e
⇒ linear in circuit size!

E.g., suppose we want to compute:

max
q

p(q | e)

× ×

× ×× ×

X1

X2

X1

X2

X3 X4 X3 X4

98/138



Determinism + decomposability = tractable MAP

If p(q, e) =
∑

i wipi(q, e) = maxi wipi(q, e),
(deterministic sum unit):

max
q

p(q, e) = max
q

∑
i

wipi(q, e)

= max
q

max
i

wipi(q, e)

= max
i

max
q

wipi(q, e)

⇒ one non-zero term, thus sum is max

× ×

× ×× ×

X1

X2

X1

X2

X3 X4 X3 X4
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Determinism + decomposability = tractable MAP

If p(q, e) = p(qx, ex,qy, ey) = p(qx, ex)p(qy, ey)
(decomposable product unit):

max
q

p(q | e) = max
q

p(q, e)

= max
qx,qy

p(qx, ex,qy, ey)

= max
qx

p(qx, ex) ·max
qy

p(qy, ey)

⇒ solving optimization independently

× ×

× ×× ×

X1

X2

X1

X2

X3 X4 X3 X4
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Determinism + decomposability = tractable MAP

E.g., for argmaxx1,x3
p(x1, x3 | x2, x4):

1. turn sum into max units and
input distributions into max distributions

2. feedforward evaluation for
maxx1,x3 p(x1, x3 | x2, x4)

3. retrieve max activations in backward pass

4. compute MAP states forX1 andX3 at input units

× ×

× ×× ×

X1

X2

X1

X2

X3 X4 X3 X4
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× ×

max

max max

× ×× ×

X1

X2

X1

X2

X3 X4 X3 X4
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× ×

max

max max

× ×× ×
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.61
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Example: Tractable ELBO

Using deterministic and decomposable PCs as expressive variational familyQ for
discrete polynomial log-densities, i.e. argmaxq∈Q Ex∼q [logw(x)] +H(q)

Closed-form computation for the entropyH (Liang et al. 2017)

Shih and Ermon, “Probabilistic Circuits for Variational Inference in Discrete Graphical Models”,
2020 99/138



Goal

Given a class of queries
can we systematically find
a class of probabilistic circuits
that is tractable for it?

100/138



A language for queries

Integral expressions that can be formed by composing these operators

+ , × , pow , log , exp and /

⇒ many divergences and information-theoretic queries
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A language for queries

Integral expressions that can be formed by composing these operators

+ , × , pow , log , exp and /

⇒ many divergences and information-theoretic queries

Represented as higher-order computational graphs—pipelines—operating over circuits!
⇒ re-using intermediate transformations across queries

101/138



KLD(p || q) =
∫
val(X) p(x)× log (p(x)/q(x)) dX

p

q

/

r

log

s

×
t

∫



KLD(p || q) =
∫
val(X) p(x)× log

(
p(x) / q(x)

)
dX

p

q

/

r

log

s

×
t

∫



KLD(p || q) =
∫
val(X) p(x)× log (p(x)/q(x)) dX

p

q

/

r

log

s

×
t

∫



KLD(p || q) =
∫
val(X) p(x) × log (p(x)/q(x)) dX

p

q

/

r

log

s

×
t

∫



XENT(p || q) =
∫
p(x)× log q(x) dX

p

q

log

r

×
s

∫



Tractable operators

X1

X2

X3

× ×

X1

X1

X2

×

× X3

×

X1

X1

X2

X2

×

×

X3

X3

×

×

smooth, decomposable
compatible
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Tractable operators

JX < γK

JY ≥ δK

JX ≥ γK

JY < δK

×

×

p1

p2
θ1

θ2

log
log p1(X)

JY ≥ δK

log p1(Y )

JX < γK

×

×

supp(p1)

log θ1

log p2(X)

JY < δK

log p2(Y )

JX ≥ γK

×

×

supp(p2)

log θ2

smooth, decomposable
deterministic

smooth, decomposable
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SMOsmoothness

DECdecomposability

DETdeterminism

CMPcompatibility

+

p
+
q

×
p
×
q

po
wN

p
n

po
wR

p
α

/
p/
q

log
lo
g
p

exp
ex
p
p

8 4 4 4 4 4 4

8 8 8 4 8 8 8

8 8 8 4 4 4 8

8 4 4 8 4 8 8

Building an atlas of composable tractable atomic operations 107/138



p

q

log

r

×
s

∫

To perform tractable integration we need s to be smooth and decomposable…



p

q

log

r

×
s

∫

hence we need p and r to be smooth, decomposable and compatible…



p

q

log

r

×
s

∫

therefore q must be smooth, decomposable and deterministic…



p

q

log

r

×
s

∫

we can computeXENT tractably if p and q are smooth, decomposable, compatible
and q is deterministic…



compositionally derive the tractability of many more queries

Vergari et al., “A Compositional Atlas of Tractable Circuit Operations: From Simple
Transformations to Complex Information-Theoretic Queries”, 2021 111/138



and prove hardness when some input properties are not satisfied

Vergari et al., “A Compositional Atlas of Tractable Circuit Operations: From Simple
Transformations to Complex Information-Theoretic Queries”, 2021 111/138



Composable tractable sub-routines

Efficient inference algorithms in a couple lines of Julia code! 1

1https://github.com/UCLA-StarAI/circuit-ops-atlas 111/138



Next up…

1. Learning and reasoning with symbolic constraints

2. Expected predictions: handling missing values, fairness

⇒ using tractable products

X1

X2

X3

× ×

X1

X1

X2

×

× X3

×

X1

X1

X2

X2

×

×

X3

X3

×

×

smooth, decomposable
compatible
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Symbolic constraints

“How can neural nets
reason and learn with
symbolic constraints
reliably and efficiently?”
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When?

Ground Truth

e.g. predict shortest path in a map

114/138



When?

given x // e.g. a tile map

Ground Truth

structured output prediction (SOP) tasks

Vlastelica et al., “Differentiation of blackbox combinatorial solvers”, 2020 115/138



When?

given x // e.g. a tile map
find y∗ = argmaxy pθ(y | x) // e.g. a configurations of edges in a grid

Ground Truth

structured output prediction (SOP) tasks

Vlastelica et al., “Differentiation of blackbox combinatorial solvers”, 2020 115/138



When?

given x // e.g. a tile map
find y∗ = argmaxy pθ(y | x) // e.g. a configurations of edges in a grid

s.t. y |= K // e.g., that form a valid path

Ground Truth

structured output prediction (SOP) tasks

Vlastelica et al., “Differentiation of blackbox combinatorial solvers”, 2020 115/138



When?

given x // e.g. a tile map
find y∗ = argmaxy pθ(y | x) // e.g. a configurations of edges in a grid

s.t. y |= K // e.g., that form a valid path

// for a 12× 12 grid, 2144 states but only 1010 valid ones!
Ground Truth

structured output prediction (SOP) tasks

Vlastelica et al., “Differentiation of blackbox combinatorial solvers”, 2020 115/138



When?

given x // e.g. a feature map
find y∗ = argmaxy pθ(y | x) // e.g. labels of classes

s.t. y |= K // e.g., constraints over superclasses

K : (Ycat =⇒ Yanimal) ∧ (Ydog =⇒ Yanimal)

hierarchical multi-label classification

Giunchiglia and Lukasiewicz, “Coherent hierarchical multi-label classification networks”, 2020 116/138



When?

Ground Truth ResNet-18

neural nets struggle to satisfy validity constraints!

117/138



How?

take an unreliable neural network architecture…

118/138



How?

……and replace the last layer with
a semantic probabilistic layer

119/138



SPL

SPL

qΘ(y | g(z)) is an expressive distribution over labels

cK(x,y) encodes the constraint 1{x,y |= K}

Ahmed et al., “Semantic Probabilistic Layers for Neuro-Symbolic Learning”, 2022 120/138



SPL

SPL

p(y | x) = qΘ(y | g(z)) · cK(x,y)/Z(x)

Z(x) =
∑

y
qΘ(y | x) · cK(x,y)

Ahmed et al., “Semantic Probabilistic Layers for Neuro-Symbolic Learning”, 2022 120/138



SPL

Y1

Y2

Y1

Y2

×

×

Y3

Y3

×

×

q

g

a conditional circuit q(y;Θ = g(z))
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SPL

1{Y1 = 0}

1{Y1 = 1}

1{Y2 = 0}

1{Y2 = 1}

×

×

× ×

1{Y3 = 1}

1{Y3 = 0}

× c

and a logical circuit c(y,x) encoding K
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Tractable products

X1

X2

X3

× ×

X1

X1

X2

×

× X3

×

X1

X1

X2

X2

×

×

X3

X3

×

×

smooth, decomposable
compatible

exactly compute Z in time O(|q||c|)
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SPL recipe

K : (Y1 = 1 =⇒ Y3 = 1)

∧ (Y2 = 1 =⇒ Y3 = 1)

1) Take any
logical constraint
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× c

2) Compile it into
a constraint circuit

124/138



SPL recipe

K : (Y1 = 1 =⇒ Y3 = 1)

∧ (Y2 = 1 =⇒ Y3 = 1)

1) Take any
logical constraint

1{Y1 = 0}

1{Y1 = 1}

1{Y2 = 0}

1{Y2 = 1}

×

×

× ×

1{Y3 = 1}

1{Y3 = 0}

× c

2) Compile it into
a constraint circuit

Y1

Y2

Y1
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×
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SPL recipe

K : (Y1 = 1 =⇒ Y3 = 1)

∧ (Y2 = 1 =⇒ Y3 = 1)

1) Take any
logical constraint

1{Y1 = 0}

1{Y1 = 1}

1{Y2 = 0}

1{Y2 = 1}

×

×

× ×

1{Y3 = 1}

1{Y3 = 0}

× c

2) Compile it into
a constraint circuit

Y1

Y2

Y1

Y2

×

×

Y3

Y3

×

×

q

g

3)Multiply it
by a circuit distribution

4) train end-to-end by sgd!
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Guaranteeing consistency
Ground Truth FIL LSL SPL

cost: 39.31 cost:∞ cost:∞ cost: 45.09

cost: 57.31 cost:∞ cost:∞ cost: 58.09
125/138



Expected predictions

Reasoning about the output of a classifier or regressor f given a distribution p over the
input features

Ep[f ] =

∫
val(X)

p(x)× f(x) dX

p

f

×
r

∫
126/138



Handling missing values at test time

Given a partial observationxo, what is the ex-
pected output from f ?

E
xm∼p(xm|xo)

[f(xm,xo)]

Khosravi et al., “On Tractable Computation of Expected Predictions”, 2019 127/138



Fairness analysis
using ProbabilisticCircuits
pc = load_prob_circuit(zoo_psdd_file("insurance.psdd"));
rc = load_logistic_circuit(zoo_lc_file("insurance.circuit"), 1);

q: Is the predictive model biased by gender?

groups = make_observations([["male"], ["female"]])
exps, _ = Expectation(pc, rc, groups);
println("Female  : \$ $(exps[2])");
println("Male    : \$ $(exps[1])");
println("Diff    : \$ $(exps[2] - exps[1])");
Female : $ 14170.125469335406
Male : $ 13196.548926381849
Diff : $ 973.5765429535568

https://github.com/Juice-jl/ 128/138
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Conclusions



Probabilistic Circuits
a grammar for structured tractable deep learning models

Building Circuits
imposing structure and learning parameters from data and prior knowledge

Advanced Reasoning
how do structure and reasoning interplay for real-world applications
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less tractable
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takeaway #2: we can learn circuits with billions of parameters
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takeaway# 3: a unified framework for complex reasoning
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Challenge #1
scaling tractable learning

Learn tractable models
on billions of datapoints
and thousands of features
in tractable time!
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Challenge #2
more structure!

Inject and enforce
symmetries and other
real-world biases!
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Challenge #3
advanced and automated reasoning

Move beyond single reasoning tasks
towards fully automated reasoning!
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Readings

Probabilistic Circuits: A Unifying Framework for Tractable Probabilistic Models
starai.cs.ucla.edu/papers/ProbCirc20.pdf

Foundations of Sum-Product Networks for probabilistic modeling
tinyurl.com/w65po5d

Slides for this tutorial
nolovedeeplearning.com/slides/pc-neurips22.pdf
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Code

Juice.jl advanced logical+probabilistic inference with circuits in Julia
github.com/Juice-jl/ProbabilisticCircuits.jl

SPFlow easy and extensible python library for SPNs
github.com/SPFlow/SPFlow
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Are you looking for a PhD/Postdoc?

YooJung is hiring! yj.choi@asu.edu
yoojungchoi.github.io

Antonio is hiring! avergari@ed.ac.uk
nolovedeeplearning.com/buysellexchange.html
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