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Abstract

Circuit representations are becoming the lingua
franca to express and reason about tractable gen-
erative and discriminative models. In this paper,
we show how complex inference scenarios for
these models that commonly arise in machine
learning—from computing the expectations of de-
cision tree ensembles to information-theoretic di-
vergences of sum-product networks—can be rep-
resented in terms of tractable modular opera-
tions over circuits. Specifically, we characterize
the tractability of simple transformations—sums,
products, powers, logarithms, and exponentials—
in terms of sufficient structural constraints of the
circuits they operate on. Building on these opera-
tions, we derive a unified framework for reasoning
about tractable models that generalizes several re-
sults in the literature and opens up novel tractable
inference scenarios.

1 INTRODUCTION

Many core computational tasks in machine learning (ML)
and AI involve solving complex integrals, such as expecta-
tions appearing in information-theoretic quantities includ-
ing entropies or divergences. A fundamental question nat-
urally arises: under which conditions do these quantities
admit tractable computation? Or equivalently, when can
we compute them reliably and efficiently without resort-
ing to approximations or heuristics? If we are able to
find model classes to tractably compute these quantities
of interest—henceforth called queries—we can then de-
sign efficient algorithms for important applications such
as approximate inference [39], model compression [25],
explainable AI [21, 42, 46] and algorithmic bias detec-
tion [20, 5, 7].

This “quest” for tracing the tractability of different queries
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function kld(p, q)

r = quotient(p, q)
s = log(r)
t = product(p, s)
return integrate(t)

end

function xent(p, q)
r = log(q)
s = product(p, r)
return -integrate(s)

end
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Figure 1: Computational pipelines of the KLD (top) and cross en-
tropy (bottom) over two distributions p and q encoded as circuits,
as are the intermediate computations (r, s, t). Their corresponding
implementations in Julia are shown on their right.

has been carried out several times, often independently for
different model classes in ML and AI and crucially, for
each query in isolation. For example, the computation of
the Kullback-Leibler divergence (KLD) is known to have
a closed form for Gaussians, but only recently has an ex-
act algorithm been derived for a more complex tractable
model class such as probabilistic sentential decision dia-
grams (PSDDs) [25]. On the other hand, tractable computa-
tion of the entropy, despite being a sub-routine for the KLD,
has only been derived for a different tractable model class—
selective sum-product networks (SPNs) [32]—by Shih and
Ermon [39]. In the current paradigm, if one were to trace
the tractability of a query that has not yet been investigated
but still involves the same “building blocks” such as log-
arithms, integrals and products over distributions, for in-
stance Rényi’s alpha divergence [36], they would need to
derive a novel custom algorithm for each model class and
prove its tractability from scratch.

In this paper, we take a different path and introduce a gen-
eral framework under which the tractability of complex
queries can be traced in a unified and effortless manner
over model classes and query classes. To abstract from
the different model formalisms, we carry our analysis over
circuit representations [6] as they subsume many tractable
generative models—probabilistic circuits such as Chow-
Liu trees [8], hidden Markov models (HMMs) [35], sum-
product networks (SPNs) [34], and other deep mixture
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models—as well as discriminative ones—including deci-
sion trees [22, 9] and deep regressors [20]—thus enabling
a unified treatment across model classes.

To generalize our analysis across queries, we propose to
represent a single query as a circuit pipeline—a computa-
tional graph whose intermediate operations transform and
combine the input circuits into other circuits. We can first
build a set of simple tractable circuit transformations–sums,
products, powers, logarithms, and exponentials—and then
i) analyze the tractability of a single query by propagating
the sufficient conditions for tractability of the intermedi-
ate operators in the pipeline; and ii) automatically distill
a tractable inference algorithm by composing the operators
used. For instance, Fig. 1 shows the pipeline for comput-
ing the KLD of p and q, two distributions encoded by cir-
cuits. We can identify a general class of models that sup-
ports its tractable computation: by tracing the conditions
for tractable quotient, logarithm, and product over circuits
such that the output circuit (i.e., t) admits tractable inte-
gration, we can derive a set of sufficient conditions for the
input circuits. Moreover, we can reuse the logarithm and
product operations in the KLD pipeline to reason about the
tractability of cross entropy, in the very same way we can
reuse the corresponding code subroutines we provide in Ju-
lia to quickly implement algorithms for the two queries in a
couple lines of code as shown in Fig. 1. This composition-
ality greatly speeds up the design of novel tractable algo-
rithms.

We make the following contributions: (1) a systematic
way to compositionally answer many complex queries us-
ing simple circuit transformations (Sec. 3), proving suffi-
cient conditions for their tractability (Tab. 1); (2) a uni-
fication and generalization of many inference algorithms
proposed in the literature so far for specific represen-
tations (Sec. 4); (3) novel tractability results of com-
plex information-theoretic queries including several widely
used entropies and divergences (Tab. 2); and (4) an im-
plementation of these operators in the Juice circuit li-
brary [11].1 We now start by introducing the circuit lan-
guage.

2 CIRCUIT REPRESENTATIONS

Circuits represent functions as parameterized computa-
tional graphs. By imposing certain structural constraints on
these graphs, we can guarantee the tractability of certain op-
erations over the encoded functions. Moreover, these con-
straints help understand how circuits unify several classical
tractable model classes, such as mixture models, bounded-
treewidth probabilistic graphical models (PGMs), decision
trees, and compact logical function representations [6, 45].
As such, circuits provide a language for building and rea-

1Code will be released upon acceptance.

soning about tractable representations.

We introduce the basic rules of this language by distinguish-
ing between general circuits and those encoding probabil-
ity distributions, as some operators in Sec. 3 might be re-
stricted to the latter. Then, we will review the structural
constraints we need to characterize different inference sce-
narios, also known as classes of queries. We denote random
variables by uppercase letters (X) and their assignments by
lowercase ones (x). Sets of variables and their assignments
are denoted by bold uppercase (X) and bold lowercase (x)
letters, respectively and the set of all their values as val(X).

Definition 2.1 (Circuit). A circuit p over variables X is
a parameterized computational graph encoding a function
p(X) and comprising three kinds of computational units:
input, product, and sum. Each inner unit n (i.e., product or
sum unit) receives inputs from other units, denoted in(n).
If n is an input unit, it encodes a parameterized function
pn(ϕ(n)) over variables ϕ(n) ⊆ X, also called its scope.
Instead, if n is a sum unit, it encodes

∑
c∈in(n) θcpc(ϕ(n))

where θc ∈ R are the sum parameters; while if it is
a product unit, it encodes

∏
c∈in(n) pc(ϕ(n)). The scope

of an inner unit is the union of the scopes of its inputs:
ϕ(n) =

∪
c∈in(n) ϕ(c). The output unit of the circuit is

the last unit (i.e., with out-degree 0) in the graph, encod-
ing p(X). The support of p is the set of all complete states
for X for which the output of p is non-zero: supp(p) =
{x ∈ val(X) | p(x) ̸= 0}.

Circuits can be understood as compact representations of
polynomials with exponentially many terms, whose inde-
terminates are the functions encoded by the input units.
These functions are assumed to be simple enough to al-
low tractable computations of the operations discussed in
this paper. Fig. 2 shows some examples of circuits. A prob-
abilistic circuit (PC) [6] represents a (possibly unnormal-
ized) probability distribution by encoding its probability
mass, density, or a combination thereof.

Definition 2.2 (Probabilistic circuit). A PC over variables
X is a circuit encoding a function p that is non-negative for
all values of X; i.e., ∀x ∈ val(X) : p(x) ≥ 0.

From here on, we will assume a PC to have positive sum
parameters and input units that model valid (unnormalized)
distributions, which is a sufficient condition to satisfy the
above definition. Moreover, w.l.o.g. we will assume that
each layer of a circuit alternates between sum and product
units and that every product unit n receives only two inputs
c1, c2, i.e., pn(X) = pc1(X) · pc2(X). These conditions
can easily be enforced on a circuit in exchange for only a
polynomial increase in its size [43, 44].

Computing (functions of) p(X), or in other words perform-
ing inference, can be done by evaluating its computational
graph. Hence, the computational cost of inference on a cir-
cuit is a function of its size, defined as the number of edges
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(c) Omni-compatible circuits for p(X) = p(X1)p(X2)p(X3)

Figure 2: Examples of circuit representations with different struc-
tural properties. The feedforward order is from left to right; input
units are labeled by their scope; and sum parameters are omitted
for visual clarity. Product units of the rearranged omni-compatible
factorization (bottom) are color-coded with those of matching
scope in the top circuits.

in it and denoted as |p|. For instance, querying the value
of p for a complete assignment x equals its feedforward
evaluation—inputs before outputs—and therefore is linear
in |p|. Other common inference scenarios such as function
integration—which translate to marginal inference in the
context of probability distributions—can be tackled in lin-
ear time with circuits that exhibit certain structural proper-
ties, as discussed next.

Structural Properties of Circuits. Structural constraints
on the computational graph of a circuit in terms of its scope
or support provide sufficient and/or necessary conditions
for certain queries to be tractably computed. We now define
the structural properties needed for the query classes that
this work will focus on. See Choi et al. [6] for more details.

Definition 2.3 (Smoothness). A circuit is smooth if for ev-
ery sum unit n, its inputs depend on the same variables:
∀ c1, c2 ∈ in(n), ϕ(c1) = ϕ(c2).

Smooth PCs generalize shallow mixture models [26] to
deep and hierarchical models. For instance, a Gaussian mix-
ture model (GMM) can be represented as a smooth PC with
a single sum unit over as many input units as mixture com-
ponents, each encoding a (multivariate) Gaussian density.

Definition 2.4 (Decomposability). A circuit is decompos-
able if the inputs of every product unit n depend on disjoint
sets of variables: in(n) = {c1, c2}, ϕ(c1) ∩ ϕ(c2) = ∅.

Decomposable product units encode local factorizations.
That is, a decomposable product unit n over variables X
encodes pn(X) = p1(X1) · p2(X2) where X1 and X2

form a partition of X. Taken together, decomposability and
smoothness are a sufficient and necessary condition for per-
forming tractable integration over arbitrary sets of variables
in a single feedforward pass, as they enable larger integrals
to be efficiently decomposed into smaller ones [14, 6].

Proposition 2.1 (Tractable integration). Let p be a smooth
and decomposable circuit over X with input functions that
can be tractably integrated. Then for any variables Y ⊆ X
and their assignment y, the integral

∫
z∈val(Z)

p(y, z)dZ,
where Z = X \Y, can be computed exactly in Θ(|p|) time.

As the complex queries we focus on in this work involve
integration as the last step, it is therefore needed that any
intermediate operation preserves at least decomposability;
smoothness is less of an issue, as it can be enforced in poly-
time [40]. A key additional constraint over scope decom-
positions is compatibility. Intuitively, two decomposable
circuits are compatible if they can be rearranged in poly-
nomial time2 such that their respective product units, once
matched by scope, decompose in the same way. We formal-
ize this with the following inductive definition.

Definition 2.5 (Compatibility). Two circuits p and q over
variables X are compatible if (1) they are smooth and
decomposable and (2) any pair of product units n ∈
p and m ∈ q with the same scope can be rearranged
into binary products that are mutually compatible and
decompose in the same way: (ϕ(n) = ϕ(m)) =⇒
(ϕ(ni) = ϕ(mi), ni and mi are compatible) for some rear-
rangement of the inputs of n (resp. m) into n1, n2 (resp.
m1,m2).

We can derive from compatibility the following properties
pertaining to a single circuit, which will be useful later.

Definition 2.6 (Special types of compatibility). A decom-
posable circuit p over X is structured-decomposable if it is
compatible with itself and omni-compatible if it is compat-
ible with any smooth and decomposable circuit over X.

Not all decomposable circuits are structured-decomposable
(see Figs. 2a and 2b), but some can be rearranged to be
compatible with any decomposable circuit. For instance, in
Fig. 2c, the fully factorized product unit p(X) = p1(X1) ·
p2(X2) · p3(X3) can be rearranged into p1(X1) · (p2(X2) ·
p3(X3)) and p2(X2)·(p1(X1)·p3(X3)) to match the yellow
and pink products in Fig. 2a. We can easily see that omni-
compatible circuits must assume the form of mixtures of
fully-factorized models; i.e.,

∑
i θi

∏
j pi,j(Xj). For exam-

ple, an additive ensemble of decision trees over variables
X can be represented as an omni-compatible circuit. Also
note that if two circuits are compatible and neither is omni-
compatible, then both must be structured decomposable.

Definition 2.7 (Determinism). A circuit is deterministic
if the inputs of every sum unit n have disjoint supports:
∀ c1, c2 ∈ in(n), c1 ̸= c2 =⇒ supp(c1) ∩ supp(c2) = ∅.

Analogously to decomposability, determinism induces a re-
cursive partitioning, but this time over the support of a cir-
cuit. For a deterministic sum unit n, the partitioning of its

2By changing the order in which n-ary product units are
turned into a series of binary product units.
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support can be made explicit by introducing an indicator
function per each of its inputs, i.e.,

∑
c∈in(n) θcpc(x) =∑

c∈in(n) θcpc(x)Jx ∈ supp(pc)K. Determinism allows for
tractable maximization of a circuit [12, 6]. While we do
not consider maximization queries in this work, deter-
minism will still play a crucial role in the next sections.
Moreover, bounded-treewidth PGMs, such as Chow-Liu
trees [8] and thin junction trees [1], can efficiently be rep-
resented as a smooth, deterministic, and decomposable PC
via compilation [12, 10]. Probabilistic sentential decision
diagrams (PSDDs) [23] are deterministic and structured-
decomposable PCs that can be efficiently learned from
data [10].

3 FROM SIMPLE CIRCUIT
TRANSFORMATIONS. . .

This section aims to build an atlas of simple operations over
circuits which can then be composed into more complex
queries via circuit pipelines—computational graphs whose
units are tractable operators over circuits. To compose two
operators, we need the output circuit of one operator to sat-
isfy the structural properties required for the inputs of the
other. As such, for each of these operations we characterize
(1) its tractability in terms of the structural properties of its
input circuits, and (2) its closure w.r.t. these properties, i.e.
whether they are preserved in the output circuit, in order
to compose many operations together in a pipeline, while
(3) providing an efficient algorithmic implementation for it.
As we are interested in pipelines for queries involving inte-
gration, we expect the output circuits to at least retain de-
composability (see Prop. 2.1). If all operators in a pipeline
can be computed tractably, a simple tractable algorithm can
then be distilled for it. Tab. 1 summarizes all our results.

Sum of Circuits. The operation of summing two circuits
p(Z) and q(Y) is defined as computing s(X) = θ1 ·p(Z)+
θ2·q(Y) for X = Z∪Y and two real parameters θ1, θ2 ∈ R.
This operation, which is at the core of additive ensembles
of tractable representations,3 can be realized by introduc-
ing a single sum unit that takes as input p and q. Summa-
tion can be applied to any input circuits, regardless of struc-
tural assumptions, and it preserves several properties (see
Prop. A.1). In particular, if p and q are decomposable then
s is also decomposable; moreover, if they are compatible
then s is structured-decomposable as well as compatible
with p and q. However, representing a sum as a determinis-
tic circuit is known to be NP-hard [38], even for compatible
and deterministic inputs.

Product of Circuits. The product of two circuits p(Z)
and q(Y) can be expressed as m(X) = p(Z) · q(Y) for
variables X = Z ∪ Y. If Z and Y are disjoint, the prod-

3If p and q are PCs, then s is a PC encoding a monotonic
mixture model if θ1, θ2 > 0 and θ1 + θ2 = 1.

uct m is already decomposable. For the general case, Shen
et al. [38] introduced an efficient algorithm for the prod-
uct of two structured-decomposable and deterministic PCs
that are compatible (namely PSDDs). We generalize this re-
sult by proving that compatibility alone is sufficient for the
tractable product computation of any two circuits.

Theorem 3.1 (Tractable product). Let p and q be two com-
patible circuits over variables X Then, computing their
product m(X) as a decomposable circuit can be done in
O(|p| |q|) time. If both p and q are also deterministic, then
so is m; moreover, if p and q are structured-decomposable
then m is compatible with p (and q).

The proof is by construction, showing that computing (1)
the product of two smooth sum units p and q and (2) the
product of two compatible product units p and q takes
O(|in(p)| |in(q)|) time, given the product circuits for each
pair of child units of p and q. Then the overall time com-
plexity is O(|p| |q|) by recursion. We refer to Alg. 1 in the
Appendix for a detailed pseudocode, also applicable when
p and q have different scopes.

For (1), suppose p and q are two sum units defined as
p(x) =

∑
i∈in(p) θipi(x) and q(x) =

∑
j∈in(q) θ

′
jqj(x), re-

spectively. Then their product m(x) can be broken down
as the weighted sum of |in(p)| · |in(q)| circuits that rep-
resent the products of pairs of their inputs: m(x) =∑

i∈in(p)

∑
j∈in(q) θiθ

′
j(piqj)(x). Note that this Cartesian

product of units is a deterministic sum unit if both p and q
are deterministic, as supp(piqj)= supp(pi) ∩ supp(qj) are
disjoint for different i, j.

For (2), suppose p and q are two product units defined as
p(X) = p1(X1)p2(X2) and q(X) = q1(X1)q2(X2), re-
spectively. Then, their product m(x) can be constructed
recursively from the product of their inputs: m(x) =
p1(x1)q1(x1) · p2(x2)q2(x2) = (p1q1)(x1) · (p2q2)(x2).
Note that m retains the same scope partitioning of p and
q, hence if they were structured-decomposable, m will be
structured-decomposable and compatible with p and q.

Powers of Circuits. The α-power of a PC p(X) for an α ∈
R is denoted as pα(X) and is an operation often needed to
compute generalizations of the entropy and related diver-
gences. Let us first consider natural powers (α ∈ N) which
can be defined even for general circuits, not just PCs.

Theorem 3.2 (Natural power). If p is a structured-
decomposable circuit, then for any α ∈ N, its power can
be encoded as a compatible circuit in O(|p|α) time.

The proof easily follows by directly applying the product
operation repeatedly. We now turn our attention to non-
natural α ∈ R and tractable α-powers of PCs. First, as zero
raised to a negative power is undefined, we instead consider
the restricted α-power of a PC, denoted as a(x)|supp(p) and
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Table 1: Tractability of simple circuit operations. Tractable conditions on inputs translate to conditions on outputs. E.g.,
for the quotient p/q, if p and q are compatible (Cmp) and q is deterministic (Det), then the output is decomposable (Dec);
also (+) deterministic if p is deterministic; and structured-decomposable (SD) if both p and q are.

Operation
Tractability

Input conditions Output conditions Time Complexity

SUM θ1p+ θ2q (+Cmp) (+SD) O(|p|+|q|) (Prop. A.1)
PRODUCT p · q Cmp (+Det, +SD) Dec (+Det, +SD) O(|p||q|) (Thm. 3.1)

POWER
pn, n ∈ N SD (+Det) SD (+Det) O(|p|n) (Thm. 3.2)
pα, α ∈ R Sm, Dec, Det (+SD) Sm, Dec, Det (+SD) O(|p|) (Thm. 3.3)

QUOTIENT p/q Cmp; q Det (+p Det,+SD) Dec (+Det,+SD) O(|p||q|) (Thm. 3.4)
LOG log(p) Sm, Dec, Det Sm, Dec O(|p|) (Thm. 3.5)
EXP exp(p) linear SD O(|p|) (Prop. 3.1)

equal to (p(x))α if x ∈ supp(p) and 0 otherwise. Note
that this is equivalent to the α-power if α ≥ 0. Abus-
ing notation, we will also write it as pα(x)Jx ∈ supp(p)K,
where J·K stands for indicator functions. The key property
that enables efficient computation of power circuits is deter-
minism. More interestingly, we do not require structured-
decomposability, but only smoothness and decomposabil-
ity.

Theorem 3.3 (Tractable real powers). Let p be a smooth,
decomposable, and deterministic circuit over variables
X. Then, for any real number α ∈ R, its restricted
power, defined as a(x)|supp(p) = pα(x)Jx ∈ supp(p)K
can be represented as a smooth, decomposable, and de-
terministic circuit over variables X in O(|p|) time. More-
over, if p is structured-decomposable, then a is structured-
decomposable as well.

The proof proceeds by construction and recursively builds
a(x)|supp(p). As the base case, we can assume to compute
the restricted α-power of each input unit of p and repre-
sent it as a single new unit. For a smooth and determin-
istic sum unit, the power will decompose into the sum of
the powers of its inputs. Specifically, let p be a sum unit:
p(X) =

∑
i∈in(p) θipi(X). Then, its restricted real power

circuit a(x)|supp(p) can be expressed as( ∑
i∈in(p)

θipi(x)
)αJx ∈ supp(p)K

=
∑

i∈in(p)

θαi p
α
i (x)Jx ∈ supp(pi)K.

Above construction is made possible by determinism: only
one pi will be non-zero for any input x. Thus, the power
circuit retains the same structure as the original sum unit.

Next, for a decomposable product unit, its power will be the
product of the powers of its inputs. Specifically, let p be a
product unit: p(X) = p1(X1) · p2(X2). Then, its restricted
real power circuit a(x)|supp(p) can be expressed as(
p1(x1) · p2(x2)

)αJx ∈ supp(p)K
=

(
p1(x1)

)αJx ∈ supp(p1)K · (p2(x2)
)αJx ∈ supp(p2)K.

Note that even this construction preserves the struc-
ture of p, and thus its scope partitioning is retained
throughout the whole algorithm. Hence, if p was also
structured-decomposable, then a would also be structured-
decomposable. Alg. 2 in the Appendix illustrates the whole
algorithm in detail.

Quotients of Circuits. We can already see an exam-
ple of how simple operators can be composed to derive
other tractable ones. Consider the quotient of two circuits
p(X) and q(X), denoted as p(X)/q(X), and restricted to
supp(q). The quotient, appearing in queries such as KLD
or Itakura-Saito divergence (Sec. 4), can be computed by
first taking the reciprocal circuit (i.e., the (−1)-power) of q,
followed by its product with p.

Theorem 3.4 (Tractable quotient). Let p and q be two com-
patible circuits over variables X, and let q be also deter-
ministic. Then, their quotient restricted to supp(q) can be
represented as a circuit compatible with p and q over X
in O(|p| |q|) time. Moreover, if p is also deterministic, then
the quotient circuit is deterministic.

We know from Thm. 3.3 that we can obtain the reciprocal
circuit q−1 that is also compatible with q (and by exten-
sion p) in O(|q|) time. Then we can multiply p and q−1 in
O(|p| |q|) time using Thm. 3.1 to compute their quotient
circuit that is still compatible with p and q. If p is also
deterministic, then we are multiplying two deterministic
circuits and therefore their product circuit is deterministic
(Thm. 3.1).

Logarithms of PCs. The logarithm of a PC p(X), denoted
log p(X), is fundamental in computing quantities such as
entropies and divergences between distributions (Sec. 4).
Since the log is undefined for 0 we will again consider the
restricted logarithm, denoted as l(x)|supp(p) and equal to
log p(x) if x ∈ supp(p) and 0 otherwise.

Theorem 3.5 (Tractable logarithms). Let p be a smooth,
deterministic and decomposable PC over variables X.
Then its restricted logarithm, defined as l(x)|supp(p) =

log p(x)Jx ∈ supp(p)K, can be represented as a smooth
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and decomposable circuit that shares the scope partition-
ing of p in O(|p|) time. Moreover, if p is structured decom-
posable, then so is its logarithm circuit.

Note that while the input of the logarithm operator must
be a PC, its output can be a general circuit. The proof pro-
ceeds by recursively constructing l(x)|supp(p). In the base
case, we assume computing the logarithm of an input unit
can be done in O(1) time. When we encounter a smooth
and deterministic sum unit p(x) =

∑
i∈|in(p)| θipi(x), its

logarithm circuit consists of the sum of (i) the logarithm
circuits of its child units and (ii) the support circuits of its
children weighted by their respective weights {θi}|in(p)|i=1 :

l(x)|supp(x) = log
( ∑

i∈in(p)

θipi(x)
)
· Jx ∈ supp(p)K

=
∑

i∈|in(p)|

log
(
θipi(x)

)Jx ∈ supp(pi)K
=

∑
i∈|in(p)|

log θiJx ∈ supp(pi)K + ∑
i∈|in(p)|

li(x)|supp(pi)
.

For a decomposable product unit p(x) = p1(x1)p2(x2),
its logarithm circuit can be decomposed as the sum of log-
arithm circuits of its child units:

l(x)|supp(x) = log (p1(x1)p2(x2)) · Jx ∈ supp(p)K
= log p1(x1)Jx1 ∈ supp(p1)KJx2 ∈ supp(p2)K
+ log p2(x2)Jx2 ∈ supp(p2)KJx1 ∈ supp(p1)K

= l(x1)|supp(p1)
Jx2 ∈ supp(p2)K

+ l(x2)|supp(p2)
Jx1 ∈ supp(p1)K. (1)

Note that in both case, the support circuits (e.g.,Jx ∈ supp(p)K) are used to enforce smoothness in the out-
put circuit. Alg. 3 in the Appendix illustrates the algorithm
in detail, showing that the construction of these support cir-
cuits can be done in linear time by caching intermediate
sub-circuits. We point out that determinism again allows
the restricted log to decompose over the support of the PC,
but this time the output circuit is not deterministic. Never-
theless, the inputs of the newly introduced sum units can
be clearly partitioned into groups sharing the same support
of the corresponding product units in p (see Fig. 3 for an il-
lustrative example). This implies that whenever we have to
multiply a deterministic circuit and its logarithmic circuit—
for instance to compute its Shannon entropy (Sec. 4)—we
can leverage the sparsifying effect of non-overlapping sup-
ports and perform only a linear number of products (cf.
product and power operators).

Exponentials of Circuits. The exponential of a circuit
p(X), denoted exp(p(X)), is the inverse operation of the
logarithm and is a fundamental operation when represent-
ing distributions such as log-linear models [24]. Similar to

JX < γK

JY ≥ δK

JX ≥ γK

JY < δK

×

×

p1

p2
θ1

θ2

log p1(X)

JY ≥ δK

log p1(Y )

JX < γK

×

×

supp(p1)

log θ1

log p2(X)

JY < δK

log p2(Y )

JX ≥ γK

×

×

supp(p2)

log θ2

Figure 3: Building the logarithmic circuit (right) for a determin-
istic PC (left) whose input units are labeled by their supports. A
single sum unit is introduced over smoothed product units and ad-
ditional dummy input units; units with shared support have the
same color.

the logarithm, building a decomposable circuit that encodes
an exponential of a circuit is hard in general. Unlike the
logarithm however, restricting the operation to determinis-
tic circuits does not help with tractability, since the issue
comes from product units: the exponential of a product can-
not be broken down to either a sum or a product of exponen-
tials. Nevertheless, it is easy to see that if p encodes a linear
sum over its variables, i.e., p(X) =

∑
i θiXi, we could eas-

ily represent its exponential as a circuit comprising a single
decomposable product unit, hence tractably.

Proposition 3.1 (Tractable exponential of a linear circuit).
Let p be a linear circuit over variables X, i.e., p(X) =∑

i θi ·Xi. Then exp (p(X)) can be represented as an omni-
compatible circuit with a single product unit inO(|p|) time.

The proof follows immediately by the properties of expo-
nentials of sums. Alg. 4 in the Appendix formalizes it. Note
that if we were to add an additional deterministic sum unit
over many omni-compatible circuits built in this way, we
would retrieve a mixture of truncated exponentials [28, 49].
This is the largest class of tractable exponentials we know
so far, and enlarging its boundaries is an interesting open
problem.

4 . . . TO COMPLEX COMPOSITIONAL
QUERIES

In this section, we show how our atlas of simple tractable
operators can be effectively used to systematically find a
tractable model class for any advanced query that com-
prises these operators. We show its practical utility by
quickly coming up with tractability proofs as well as distill-
ing efficient algorithms for several entropy and divergence
queries that are largely used in ML. We then discuss how
our discovered tractable circuit classes subsume some pre-
viously known results. Tab. 2 summarizes our results.

We now showcase how a short tractability proof can be eas-
ily distilled, using Rényi’s α-divergence4 [36] as an exam-

4Several alternative formulations of α-divergences can be
found in the literature such as Amari’s [27] and Tsallis’s [30] di-
vergences. However, as they share the same core operations—real
powers and products—our results easily extend to them as well.
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Table 2: Tractability of information-theoretic queries given
some conditions over the input circuits. See Appendix B.

Query Conditions

CROSS ENTROPY −
∫
p(x) log q(x) Cmp, q Det

SHANNON ENTROPY −
∑

p(x) log p(x) Sm, Dec, Det

RÉNYI ENTROPY
(1− α)−1 log

∫
pα(x), α ∈ N SD

(1− α)−1 log
∫
pα(x), α ∈ R+ Sm, Dec, Det

MUTUAL INFORMATION
∫
p(x,y) log(p(x,y)/(p(x)p(y))) Sm, SD, Det*

KULLBACK-LEIBLER DIV.
∫
p(x) log(p(x)/q(x)) Cmp, Det

RÉNYI’S ALPHA DIV. (1− α)−1 log
∫
pα(x)q1−α(x), α ∈ N Cmp, q Det

(1− α)−1 log
∫
pα(x)q1−α(x), α ∈ R Cmp, Det

ITAKURA-SAITO DIV.
∫
[p(x)/q(x)− log(p(x)/q(x))− 1] Cmp, Det

CAUCHY-SCHWARZ DIV. − log
∫
p(x)q(x)√∫
p2(x)

∫
q2(x)

Cmp

SQUARED LOSS
∫
(p(x)− q(x))2 Cmp

ple. Note that no tractable algorithm was available for it yet.
A proof can be built by inferring the sufficient conditions
to tractably compute each operator in the pipeline—starting
from the last before the integral and proceeding backwards
according to Tab. 1.

Theorem 4.1 (Tractable alpha divergence). The Rényi’s α-
divergence between two distributions p and q, defined as
(1 − α)−1 log

∫
pα(x)q1−α(x) dX, can be computed ex-

actly in O(|p|α |q|) time for α ∈ N, α > 1 if p and q are
compatible and q is deterministic, or in O(|p| |q|) time for
α ∈ R, α ̸= 1 if p and q are both deterministic and compat-
ible.

Proof. A circuit pipeline for Rényi’s α-divergence involves
first computing r = pα and s = q1−α, then t = r · s
and finally integrate it.5 Therefore we require t to be a
smooth and decomposable circuit (Prop. 2.1), which in turn
requires r and s to be compatible (Thm. 3.1). To conclude
the proof, we need to compute two compatible circuits r
and s in polytime, which can be done according to Thm. 3.3
or Thm. 3.2 depending on the value of α. As these theorems
state, pα and q1−α will be compatible with p and q , respec-
tively, with sizes O(|p|α) and O(|q|) for a natural power α
or O(|p|) and O(|q|) for a real-valued α. Hence, t can be
computed in O(|p|α |q|) time for α ∈ N or O(|p| |q|) for
α ∈ R (Thm. 3.1).

We leave the formal theorems and proofs for the other
queries listed in Tab. 2 to Sec. B in the Appendix for space
constraints. We remark again that our technique can be used
beyond this query list and can be applied to any complex
query that involves a pipeline comprising the operations we
discussed in Sec. 3 and culminating in an integration.

Information-theoretic queries. Smooth, decomposable
and deterministic PCs enable the exact computation of
Shannon entropy and this tractability result translates to
bounded-treewidth PGMs such as Chow-Liu trees and poly-
trees as they are special cases (Sec. 2). Our framework pro-
vides a more succinct tractability proof for the computation

5As all the operations outside integration are tractable, we can
skip them.

of Shannon entropy derived by Shih and Ermon [39]. For
non-deterministic PCs we can employ the tractable com-
putation of Rényi entropy of order α [36], which recovers
Shannon Entropy for α → 1. As the logarithm is taken
after integration of the power circuit, the tractability fol-
lows directly from that of the power operation (Thm. 3.2
and 3.3). Moreover, using our atlas, the cross entropy can
be tractably computed in O(|p| |q|) if p and q are determin-
istic and compatible. Let a joint distribution p(X,Y) and
its marginals p(X) and p(Y) be represented as PCs. Then
the mutual information (MI) over these three PCs can be
computed via a pipeline involving product, quotient, and
log operators and it is tractable if all circuits are compati-
ble and deterministic.

Divergences. Liang and Van den Broeck [25] proposed an
efficient algorithm to compute the KLD tailored for PS-
DDs.6 This has been the only tractable divergence avail-
able for PCs so far. We greatly extend this panorama with
our atlas by introducing Rényi’s α-divergences which gen-
eralize several other divergences such as the KLD when
α→ 1, Hellinger’s squared divergence when α=2−1, and
the X 2-divergence when α = 2 [15]. As Thm. 4.1 states,
they are tractable for compatible and deterministic PCs, as
is the Itakura-Saito divergence [47]. For non-deterministic
PCs, we characterize the tractability of the squared loss and
the Cauchy-Schwarz divergence [18]. The latter has appli-
cations in mixture models for approximate inference [41]
and has been derived in closed-form only for mixtures of
simple parametric forms like Gaussians [19], Weibull and
Rayligh distributions [29]. Our results generalize them to
deep mixture models [34].

Expectation queries. Among other complex queries that
can be abstracted into the general form of an expectation
of a circuit f w.r.t. a PC p, i.e., Ex∼p(X) [f(x)], there are
the moments of distributions, such as means and variances.
They can be efficiently computed for any smooth and de-
composable PC, as f is an omni-compatible circuit. This
result generalizes the moment computation for simple mod-
els such as GMMs and HMMs as they can be encoded as
smooth and decomposable PCs (Sec. 2). If f is the indi-
cator function of a logical formula, the expectation com-
putes its probability w.r.t. the distribution p. Choi et al. [3]
proposed an algorithm tailored to formulas f over binary
variables, encoded as SDDs [13] w.r.t. distributions that
are PSDDs. We generalize this result to mixed continuous-
discrete distributions encoded as structured-decomposable
PCs that are not necessarily deterministic and to logical for-
mulas in the language of satisfiability modulo theories [2]
over linear arithmetics with univariate literals. Lastly, if f
encodes constraints over the output distribution of a deep
network we retrieve the semantic loss [48]. If f encodes a
classifier or a regressor, then Ep[f ] refers to computing its

6Note that our tractability proof is only a few lines long and
does not require the ad-hoc algebraic derivations of [25].
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expected predictions w.r.t. p [21]. Our results generalize the
results reported in Van den Broeck et al. [42] such as com-
puting the expectations of decision trees and their ensem-
bles [22] as well as those of deep regression circuits [20].7

5 DISCUSSION AND CONCLUSIONS

This work introduced a unified framework to reason about
tractable model classes for complex queries composed of
simpler operations. This rich atlas of operators can be used
to solve many queries common in probabilistic ML and AI
as well as novel inference scenarios.

Darwiche and Marquis [14] is the work most closely re-
lated to ours: they define operators over logical circuits,
encoding Boolean functions as computational graphs with
AND and OR gates, for which structural properties analo-
gous to those discussed in Sec. 2 can be defined. Our re-
sults generalize their work on logical tractable operators
such as disjunctions and conjunctions—the analogous to
our (deterministic) sums and products—while also extend-
ing it to powers, logarithms and exponentials as well as
complex queries such as divergences, which have no direct
counterpart in the logical domain. Algorithms to tractably
multiply two probabilistic models have been proposed for
probabilistic decision graphs (PDGs) first [16] and PSDDs
later [38]. Despite the different syntax, both model classes
can be encoded as structured-decomposable and determin-
istic circuits in our language [6].8

Our property-driven analysis closes many open questions
about the tractability of queries for several model classes
that are special cases of circuits. At the same time, it opens
new ones, for instance how to characterize other queries in-
volving not only integration but also maximization—that is,
understanding what are the operators that make MAP infer-
ence over probabilistic circuits or optimization over general
circuits tractable.
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A CIRCUIT OPERATIONS

This section contains the complete algorithms for the oper-
ators summarized in Tab. 1—sums, products, powers, loga-
rithms, and exponentials. For the tractability theorems, we
will assume that the operation referenced by the theorem
is tractable over input units of circuit or pairs of compat-
ible input units. For example, for Thm. 3.1 we assume
tractable product of input units sharing the same scope and
for Thm. 3.3 we assume that the powers of the input units
can be tractably represented as a single new unit. Note that
this is generally easy to realize for simple parametric forms
e.g., multivariate Gaussians and for univariate distributions,
unless specified otherwise.

Moreover, in the following results, we will adopt a more
general definition of compatibility that can be applied to
circuits with different variable scopes, which is often useful
in practice. Formally, consider two circuits p and q with
variable scope Z and Y. Analogous to Def. 2.5, we say
that p and q are compatible over variables X = Z ∩ Y if
(1) they are smooth and decomposable and (2) any pair of
product units n ∈ p and m ∈ q with the same overlapping
scope with X can be rearranged into mutually compatible
binary products. Note that since our tractability results hold
for this extended definition of compatibility, they are also
satisfied under Def. 2.5.

We start by introducing some useful sub-routines.

Support circuit. Given a smooth, decomposable, and
deterministic circuit p(X), its support circuit s(X) is a
smooth, decomposable, and deterministic circuit that eval-
uates 1 iff the input x is in the support of p (i.e., x ∈
supp(p)) and otherwise evaluates 0, as defined below.

Definition A.1 (Support circuit). Let p be a smooth, de-
composable, and deterministic PC over variables X. Its
support circuit is the circuit s that computes s(x) =Jx ∈ supp(p)K, obtained by replacing every sum parame-
ter of p by 1 and every input distribution l by the functionJx ∈ supp(l)K.

Uniform distribution circuit. We can build a determin-
istic and omni-compatible PC that encodes a (possibly
unnormalized) uniform distribution over binary variables
X = {X1, . . . , Xn}: i.e., p(x) = c for a constant c ∈ R+

for all x ∈ val(X). Specifically, p can be defined as a single
sum unit with weight c that receives input from a product
unit over n univariate input distribution units that always
output 1 for all values val(Xi).

Sum of circuits. The hardness of the sum of two circuits
to yield a deterministic circuit has been proven by Shen
et al. [38] in the context of arithmetic circuits (ACs) [14].
ACs can be readily turned into circuits over binary variables
according to our definition by translating their input param-
eters into sum parameters as done in Rooshenas and Lowd

[37]. A sum of circuits will preserve decomposability and
related properties as the next proposition details.

Proposition A.1 (Closure of sum of circuits). Let p(Z)
and q(Y) be decomposable circuits. Then their sum circuit
s(Z∪Y) = θ1 ·p(Z)+θ2 ·q(Y) for two reals θ1, θ2 ∈ R is
decomposable. If p and q are structured-decomposable and
compatible, then s is structured-decomposable and compat-
ible with both p and q. Lastly, if both inputs are also smooth,
s can be smoothed in polytime.

Proof. If p and q are decomposable, s is also decompos-
able by definition (no new product unit is introduced). If
they are also structured-decomposable and compatible, s
would be structured-decomposable and compatible with p
and q as well, as summation does not affect their hierarchi-
cal scope partitioning. Note that if one input is decompos-
able and the other omni-compatible, then s would only be
decomposable.

If Z = Y then s is smooth; otherwise we can smooth it
in polytime [12, 40], by realizing the circuit s(x) = θ1 ·
p(z) ·Jq(x|Y\Z) ̸= 0K+ θ2 ·q(y) ·Jp(x|Z\Y) ̸= 0K whereJq(x|Y\Z) ̸= 0K (resp. Jp(x|Z\Y) ̸= 0K ) can be encoded
as an input distribution over variables Y \ Z (resp.Z \Y).
If the supports of p(Z \Y) and q(Y \ Z) are not bounded,
then integrals over them would be unbounded as well.

Algorithm 4 EXPONENTIAL(p)

1: Input: a smooth circuit p encoding p(X) = θ0 +∑n
i=1 θiXi

2: Output: its exponential circuit encoding exp (p(X))
3: e← {INPUT(exp (θ0 + θ1X1) , X1)}
4: for i = 2 to n do
5: e← e ∪ {INPUT(exp (θiXi) , Xi)}
6: return PRODUCT(e)

B COMPLEX QUERIES

This section collects the complete tractability results in
Tab. 2. Note that the proofs are succinct thanks to our atlas
which allows to define a tractable model class effortlessly.
Below, p and q denote PCs over variables X, unless speci-
fied otherwise.

Cross Entropy Suppose p and q are compatible, and
q is deterministic. Then their cross entropy, defined as
−
∫
val(X)

p(x) log(q(x))dX, restricted to the support of q
can be exactly computed inO(|p| |q|) time. From Thm. 3.5,
we can compute the logarithm of q in O(|q|) time as a cir-
cuit that is compatible with q and hence with p. Then we
can multiply p and log q according to Thm. 3.1 inO(|p| |q|)
time, returning a circuit that is still smooth and decompos-
able, hence we can tractably compute its partition function.
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Algorithm 1 MULTIPLY(p, q, cache)

1: Input: two circuits p(Z) and q(Y) that are compatible
over X = Z ∩Y and a cache for memoization

2: Output: their product circuit m(Z ∪Y) = p(Z)q(Y)

3: if (p, q) ∈ cache then return cache(p, q)
4: if ϕ(p) ∩ ϕ(q) = ∅ then
5: m← PRODUCT({p, q}); s← True
6: else if p, q are input units then
7: m← INPUT(p(Z) · q(Y),Z ∪Y)
8: s← Jsupp(p(X)) ∩ supp(q(X)) ̸= ∅K
9: else if p is an input unit then

10: n← {}; s← False //q(Y) =
∑

j θ
′
jqj(Y)

11: for j = 1 to |in(q)| do
12: n′, s′ ← MULTIPLY(p, qj , cache)
13: n← n ∪ {n′}; s← s ∨ s′

14: if s then m← SUM(n, {θ′j}
|in(q)|
j=1 ) else m← null

15: else if q is an input unit then
16: n← {}; s← False //p(Z) =

∑
i θipi(Z)

17: for i = 1 to |in(p)| do
18: n′, s′ ← MULTIPLY(pi, q, cache)
19: n← n ∪ {n′}; s← s ∨ s′

20: if s then m← SUM(n, {θi}|in(p)|i=1 ) else m← null
21: else if p, q are product units then
22: n← {}; s← True
23: {pi, qi}ki=1 ← sortPairsByScope(p, q,X)
24: for i = 1 to k do
25: n′, s′ ← MULTIPLY(pi, qi, cache)
26: n← n ∪ {n′}; s← s ∧ s′

27: if s then m← PRODUCT(n) else m← null
28: else if p, q are sum units then
29: n← {}; w ← {}; s← False
30: for i = 1 to |in(p)|, j = 1 to |in(q)| do
31: n′, s′ ← MULTIPLY(pi, qj , cache)
32: n← n ∪ n′;w ← w ∪ {θiθ′j}; s← s ∨ s′

33: if s then m← SUM(n,w) else m← null
34: cache(p, q)← (m, s)
35: return m, s

Entropy If p is smooth, deterministic, and decomposable,
then its entropy,9 defined as −

∫
val(X)

p(x) log p(x)dX,
can be exactly computed in O(|p|) time. Again, using
Thm. 3.5 we can compute the logarithm of p in O(|p|)
time as a smooth and decomposable PC with the same sup-
port partitioning as p. Thus, multiplying p and log p accord-
ing to Alg. 1 yields a smooth and decomposable circuit in
O(|p|) time exploiting the shared support structure; then
we can take its partition function in time linear in its size.

Mutual Information Let p be a deterministic and
structured-decomposable PC over variables Z = X ∪ Y
(X ∩ Y = ∅). Then the mutual information between

9For the continuous case this quantity refers to the differential
entropy, while for the discrete case it is the Shannon entropy.

Algorithm 2 POWER(p, α, cache)

1: Input: a smooth, deterministic and decomposable cir-
cuit p(X), a scalar α ∈ R, and a cache for memoization

2: Output: a smooth, deterministic and decomposable
circuit a(X) encoding pα(X)|supp(p)

3: if p ∈ cache then return cache(p)
4: if p is an input unit then a ←

INPUT(pα(X)|supp(p) , ϕ(p))
5: else if p is a sum unit then a ←

SUM({POWER(pi, α, cache)}|in(p)|i=1 ), {θαi }
|in(p)|
i=1 )

6: else if p is a product unit then a ←
PRODUCT({POWER(pi, α, , cache)}|in(p)|i=1 )

7: cache(p)← a
8: return a

X and Y, defined as
∫
val(Z)

p(x,y) log p(x,y)
p(x)·p(y)dXdY,

can be exactly computed in O(|p|) time if p is still de-
terministic after marginalizing out Y as well as after
marginalizing out X.10 From Thm. 3.5 we know that
the logarithm circuits of p(X,Y), p(X)Jy ∈ supp(p(Y))K,
and p(Y)Jx ∈ supp(p(X))K can be computed in polytime
and are smooth and decomposable circuits of size O(|p|)
that furthermore share the same support partitioning with
p(Y,Z). Therefore, we can multiply p(X,Y) with each of
these logarithm circuits efficiently according to Thm. 3.1
to yield circuits of size O(|p|). As these are still smooth
and decomposable, we can compute their partition func-
tions and compute the mutual information between X and
Y w.r.t. p.

Kullback-Leibler (KL) Divergence Suppose p and q are
deterministic and compatible. Then, their intersectional KL
Divergence, defined as

∫
supp(p)∩supp(q)

p(x) log p(x)
q(x)dX,

can exactly be computed inO(|p| |q|) time. This can be con-
cluded directly from the tractability of cross entropy and
entropy, by observing that the KLD is equal to the differ-
ence between the entropy of p and cross entropy of p and
q.

Rényi Entropy The Rényi entropy of order α of a PC p
is defined as 1

1−α log
∫
supp(p)

pα(x)dX. For α ∈ N, the
Rényi entropy of a structured-decomposable PC p can be
computed inO(|p|α) time, by computing the natural power
circuit of p in O(|p|α) time according to Thm. 3.2. For
α ∈ R+, if p is smooth, decomposable, and determinis-
tic, then its Rényi entropy can be computed in O(|p|) time,
by computing the power circuit of p in O(|p|) time using
Thm. 3.3.

10This structural property of circuits is also known as marginal
determinism [6] and has been introduced in the context of
marginal MAP inference and the computation of same-decision
probabilities of Bayesian classifiers [31, 4].
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Algorithm 3 LOGARITHM(p, cachel, caches)

1: Input: a smooth, deterministic and decomposable PC
p(X) and two caches for memoization (cachel for the
logarithmic circuit and caches for the support circuit).

2: Output: a smooth and decomposable circuit l(X) en-
coding log (p(X))

3: if p ∈ cachel then return cachel(p)
4: if p is an input unit then
5: l← INPUT(log

(
p|supp(p)

)
, ϕ(p))

6: else if p is a sum unit then
7: n← {}
8: for i = 1 to |in(p)| do
9: n ← n ∪ {SUPPORT(pi, caches)} ∪

{LOGARITHM(pi, cachel)}
10: l← SUM(n, {log θ1, 1, log θ2, 1, . . . , log θ|in(p)|, 1})
11: else if p is a product unit then
12: n← {}
13: for i = 1 to |in(p)| do
14: n← n∪{PRODUCT({LOGARITHM(pi, cachel)}∪

{SUPPORT(pj , caches)}j ̸=i)}
15: l← SUM(n, {1}|in(p)|i=1 )
16: cachel(p)← l
17: return l

Alpha Divergence Let p and q be compatible PCs over
variables X. Then their Rényi’s α-divergence, defined as

1

1− α
log

∫
supp(p)∩supp(q)

pα(x)q1−α(x)dX,

can be exactly computed in O(|p|α |q|) time for α ∈
N, α > 1 if q is deterministic or in O(|p| |q|) for α ∈
R, α ̸= 1 if p and q are both deterministic. The proof eas-
ily follows from first computing the power circuit of p and
q according to Thm. 3.3 or Thm. 3.2 in polytime. Depend-
ing on the value of α, the resulting circuits will have size
O(|p|α) and O(|q|) for α ∈ N or O(|p|) and O(|q|) for
α ∈ R and will be compatible with the input circuits. Then,
since they are compatible between themselves, their prod-
uct can be done in polytime (Thm. 3.1) and it is going to
be a smooth and decomposable PC of size O(|p|α |q|) (for
α ∈ N) or O(|p| |q|) (for α ∈ R), for which the partition
function can be computed in time linear in its size.

Itakura-Saito Divergence Let p and q be two determinis-
tic and compatible PCs over variables X, with bounded in-
tersectional support supp(p) ∩ supp(q). Then their Itakura-
Saito divergence, defined as∫

supp(p)∩supp(q)

(
p(x)

q(x)
− log

p(x)

q(x)
− 1

)
dX,

can be exactly computed inO(|p| |q|) time. Note that the in-
tegral decomposes into three integrals over the inner sum:∫ p(x)

q(x) dX −
∫
log p(x)

q(x) dX -
∫
1 dX.. Then, the first inte-

gral over the quotient can be solved O(|p| |q|) (Thm. 3.4);

Algorithm 5 RGCTOCIRCUIT(r, cacher, caches)

1: Input: a regression circuit r over variables X and two
caches for memoization (i.e., cacher and caches).

2: Output: its representation as a circuit p(X).
3: if r ∈ cacher then return cacher(r)
4: if r is an input gate then
5: p← INPUT(0, ϕ(r))
6: else if r is a sum gate then
7: n← {}
8: for i = 1 to |in(r)| do
9: n ← n ∪ {SUPPORT(ri, caches)} ∪

{RGCTOCIRCUIT(ri, cacher)}
10: p← SUM(n, {θi, 11, . . . , 1in(p)}

|in(r)|
i=1 )

11: else if r is a product gate then
12: for i = 1 to |in(r)| do
13: p← PRODUCT({RGCTOCIRCUIT(ri, cacher)}∪

{SUPPORT(rj , caches)}j ̸=i)
14: cacher(r)← p
15: return p

the second integral over the log of a quotient of two PCs
can be computed in time O(|p| |q|) (Thm. 3.4 and 3.5)
and finally the last one integrates to the dimensionality of
|supp(p) ∩ supp(q)|, which we assume to exist.

Cauchy-Schwarz Divergence Let p and q be two
structured-decomposable and compatible PCs over vari-
ables X. Then their Cauchy-Schwarz divergence, defined
as

− log

∫
x∈val(X)

p(x)q(x) dX√∫
x∈val(X)

p2(x) dX
∫
x∈val(X)

q2(x) dX
,

can be exactly computed in time O(|p| |q|+ |p|2 + |q|2).
This easily follows from noting that the numerator inside
the log can be computed in O(|p| |q|) time as a product
of two compatible circuits (Thm. 3.1); and the integrals in-
side the square root at the denominator can both be solved
in O(|p|2) and O(|q|2) respectively as natural powers of
structured-decomposable circuits (Thm. 3.2).

Squared Loss Divergence Suppose p and q are structured-
decomposable and compatible. Then their squared loss,
defined as

∫
val(X)

(p(x)− q(x))
2
dX, can be computed

exactly in time O(|p| |q| + |p|2 + |q|2). This follows
by noting that the integral decomposes over the ex-
panded square as

∫
val(X)

p2(x) dX +
∫
val(X)

q2(x) dX −
2
∫
val(X)

p(x)q(x) dX. Each integral can be computed
by leveraging the tractable natural power of structured-
decomposable circuits (Thm. 3.2) and the tractable product
of compatible circuits (Thm. 3.1).

Expected predictions Let p be a structured-decomposable
PC over variables X and f be a regression circuit [20] com-
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patible with p over X, and defined as

fn(x) =


0 if n is an input
fnL

(xL) + fnR
(xR) if n is an AND∑

c∈in(n) sc(x) (ϕc + fc(x)) if n is an OR

where sc(x) = Jx ∈ supp(c)K. Then, its expected predic-
tions can be exactly computed in O(|p| |h|) time, where
h is its circuit representation as computed by Alg. 5.
Proof follows from noting that Alg. 5 outputs a poly-
size circuit representation h in polytime. Then, computing
Ex∼p(X) [h(x)] can be done inO(|p| |h|) time by Thm. 3.1.
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