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Abstract

Probabilistic circuits (PCs) are a class of
tractable probabilistic models that allow effi-
cient, often linear-time, inference of queries
such as marginals and most probable ex-
planations (MPE). However, marginal MAP,
which is central to many decision-making
problems, remains a hard query for PCs un-
less they satisfy highly restrictive structural
constraints. In this paper, we develop a prun-
ing algorithm that removes parts of the PC
that are irrelevant to a marginal MAP query,
shrinking the PC while maintaining the cor-
rect solution. This pruning technique is so
effective that we are able to build a marginal
MAP solver based solely on iteratively trans-
forming the circuit—no search is required.
We empirically demonstrate the efficacy of
our approach on real-world datasets.

1 INTRODUCTION

Probabilistic circuits (PCs) refer to a family of
tractable probabilistic models that are known to be
able to closely capture the probability space in density
estimation tasks (Dang et al., 2020; Liu and Van den
Broeck, 2021; Peharz et al., 2020; Rooshenas and
Lowd, 2014), while allowing tractable probabilistic in-
ference of many useful queries (Li et al., 2021; Yu et al.,
2021; Vergari et al., 2021). Perhaps the most widely
supported queries for tractable inference by different
kinds of PCs are: marginal inference, which computes
the probability of a partial assignment; and the most
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probable explanations (MPE),1 which computes for a
given partial assignment (or evidence) the most likely
state of all the remaining variables.

However, many related inference tasks remain hard
even on those PCs tractable for marginals and
MPE (Rahman et al., 2021; Rouhani et al., 2018). In
particular, marginal MAP (maximum a posteriori hy-
pothesis) is a closely related problem that still appears
to be hard for most probabilistic circuits, despite being
used in many applications including image segmenta-
tion, planning, and diagnosis, among others (Lee et al.,
2014; Kiselev and Poupart, 2014; Bioucas-Dias and
Figueiredo, 2016). A marginal MAP (MMAP) prob-
lem, unlike MPE, computes the most likely state of a
subset of variables, while marginalizing out the oth-
ers. Although these queries appear closely related, a
PC that can tractably solve both marginals and MPE
queries does not necessarily solve the marginal MAP
tractably. In fact, exactly solving marginal MAP is
known to be NP-hard, even for tractable PCs (de Cam-
pos, 2011). This remains to be the case when solving it
approximately (Conaty et al., 2017; Mei et al., 2018).

Most existing marginal MAP solvers on PCs, espe-
cially exact solvers, are based on variations of branch-
and-bound search (Mei et al., 2018; Huang et al.,
2006), as has been the case for exact marginal MAP
solvers for probabilistic graphical models (Park and
Darwiche, 2002; Marinescu et al., 2014). In this pa-
per, we propose a novel approach to marginal MAP
inference: probabilistic circuit transformations.

In particular, we show that large parts of the cir-
cuit may be irrelevant to the marginal MAP prob-
lem at hand, and thus can be pruned away without
affecting the solution. This in a sense “specializes”
the PC to a particular MMAP instance and makes it
more amenable to solving. We then develop an effi-
cient algorithm to determine which parts of the cir-

1MPE is sometimes referred to as MAP (maximum a
posteriori hypothesis). To avoid confusion, in this paper
we will use the terms MPE and marginal MAP.



Solving Marginal MAP Exactly by Probabilistic Circuit Transformations

cuit can be safely pruned, using a novel edge bound.
Lastly, we propose an exact MMAP solver that lever-
ages this pruning algorithm and iteratively transforms
the PC structure until the MMAP solution can be eas-
ily read from it. We show empirically on real-world
benchmark datasets that our method can solve more
marginal MAP instances with faster run time than ex-
isting solvers.

2 BACKGROUND

We use uppercase letters (X) to denote random vari-
ables and lowercase letters (x) for their assignments.
Sets of variables are denoted by bold uppercase let-
ters (X) and their joint assignments by bold lowercase
letters (x). For a binary random variable X, we use
logical negation ¬X to denote X = 0. Lastly, we write
the set of all values for X as val(X).

2.1 Marginal MAP

Suppose p(X) is a probability distribution over a set
of variables X which is partitioned into three subsets
Q, E, and H, referred to as the query, evidence, and
hidden variables, respectively. Given some evidence
e ∈ val(E), the marginal MAP problem MMAP(Q, e)
is defined as follows:

arg max
q∈val(Q)

p(q, e) = arg max
q∈val(Q)

∑
h∈val(H)

p(q,h, e).

Note that if H is empty, this corresponds to an MPE
(most probable explanations) problem.

2.2 Probabilistic Circuits

A large family of tractable probabilistic models—
including arithmetic circuits (Darwiche, 2003), and-or
search spaces (Marinescu and Dechter, 2005), prob-
abilistic sentential decision diagrams (Kisa et al.,
2014), cutset networks (Rahman et al., 2014),
and sum-product networks (Poon and Domingos,
2011)—are collectively referred to as probabilistic cir-
cuits (PCs) (Vergari et al., 2020).

A probabilistic circuit C over variables X is a directed
acyclic graph (DAG) structure with parameters that
defines a (possibly unnormalized) probability distri-
bution over X in a recursive manner. Specifically,
the DAG structure consists of leaf, product, and sum
nodes. A leaf node is associated with a univariate
function, denoted fn, such as the indicator function
[X = 1]. Every input edge (n, c) to a sum unit n is also
associated with a parameter θn,c > 0. Let ch(n) de-
note the set of children, or inputs, of an inner node n.
A PC node then recursively defines a distribution as

the following:

n(x) =


fn(x) if n is a leaf node∏
c∈ch(n) c(x) if n is a product node∑
c∈ch(n) θn,c · c(x) if n is a sum node

We write C(x) to refer to n(x) where n is the root of
the PC C.
A key strength of probabilistic circuits is that they sup-
port tractable inference, enabled by certain structural
constraints. In particular, smooth and decomposable
PCs allow efficient computation of marginal probabil-
ities.

Definition 1. A PC C is smooth if for every sum node,
its children depend on the same set of variables. A PC
C is decomposable if for every product node, its children
depend on disjoint sets of variables.

For a smooth and decomposable PC over variables X,
computing the marginal probability of some partial as-
signment q ∈ val(Q),Q ⊆ X amounts to the following
procedure. A leaf node n is evaluated as 1 if it does
not depend on a variable in Q, and as fn(q) otherwise.
Then we simply evaluate the circuit, taking (weighted)
sums and products accordingly. For instance, consider
the smooth and decomposable PC C in Figure 1a and
a partial assignment q = {X1 = 1, X2 = 0}. Then
to compute the marginal C(q), we first set the leaf
nodes labeled ¬X1 and X2 as 0, and all others as 1.
Evaluating the circuit bottom up, we get the marginal
probability C(q) = 0.222.

In addition, probabilistic circuits satisfying more re-
strictive structural constraints even support efficient
inference of marginal MAP and related queries (Oz-
tok et al., 2016; Choi et al., 2017). These structural
constraints can be generalized into the notion of Q-
determinism (Choi et al., 2020).

Definition 2. Suppose C is a PC over variables X
and let Q ⊆ X be a subset. A sum node in C is Q-
deterministic if computing the marginal probability for
any partial assignment q ∈ val(Q) makes at most one
of its children evaluate to a nonzero output. A PC C is
Q-deterministic if all sum nodes containing variables
in Q are Q-deterministic.

Then, solving a marginal MAP problem MMAP(Q, e)
of a Q-deterministic PC simply amounts to evaluating
the circuit bottom-up similar to computing a marginal,
except that every sum node that contains a variable in
Q takes the weighted maximum of its inputs, instead
of the weighted sum.

As one may intuit from the complexity of marginal
MAP, enforcing this structural constraint on an arbi-
trary PC is an intractable task, as we also later demon-
strate empirically. Furthermore, even if one somehow
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learns or constructs a PC that satisfies Q-determinism,
this would support tractable marginal MAP only for
this specific Q. This is clearly infeasible in applica-
tions where one wishes to answer different marginal
MAP queries using the probabilistic model.

In the following sections, we assume a PC that satisfies
smoothness and decomposability. Moreover, for sim-
plicity of exposition, we consider only the marginal
MAP problems without any evidence. This is be-
cause a given evidence can be incorporated into the
PC by setting the leaf nodes (just like for comput-
ing marginals), and then we can equivalently solve the
marginal MAP problem with no evidence on the re-
sulting PC.

3 CIRCUIT PRUNING FOR
MARGINAL MAP

We now describe the main contribution behind our
proposed marginal MAP solver: pruning parts of a
probabilistic circuit without affecting its MMAP solu-
tion. This is motivated by two key observations.

3.1 Motivation

Consider the following two observations.

(i): Computing the marginal probability of any partial
assignment q is equivalent to evaluating a sub-circuit
in which every Q-deterministic sum node has one in-
put. In other words, the sub-circuit for q includes the
parts of the PC that are used or “activated” when
computing the marginal of q. Let us call this the q-
subcircuit and denote it by C′q. We illustrate this with
the example PC in Figure 1a. Suppose Q = {X1, X2}
and we wish to compute the marginal probability of
q = {X1 = 1, X2 = 0}. Recall from Section 2 that this
corresponds to setting the input units for ¬X1 and X2

to 0 and all others to 1, then evaluating the circuit in
a bottom-up fashion. We can quickly check that the
output is 0.6 · (0.7 · 0.1 + 0.3) = 0.222, which is equiva-
lent to simply evaluating the sub-circuit highlighted in
blue with its input units set to 1. Moreover, observe
that every Q-deterministic sum node (highlighted in
orange) that is included in this sub-circuit has exactly
one input.

(ii): If we remove an edge that does not appear in
the sub-circuit for any assignment q, then the (un-
normalized) probability of q is unchanged in the re-
sulting PC. This directly follows from observation (i).
For example, removing any non-colored edge from the
PC in Figure 1a does not affect the marginal for q,
as defined previously, in the resulting circuit. More-
over, if an edge in the sub-circuit for q is removed,
then the probability of q decreases in the resulting

PC. Again visiting Figure 1a, removing the edge rep-
resented by the dashed line will drop the probability
of q = {X1 = 1, X2 = 0} from 0.222 to 0.6 ·0.3 = 0.18.

We can apply observations (i) and (ii) to the marginal
MAP state, denoted by q?, to conclude that any edge
that does not appear in the q?-subcircuit (namely the
“solution sub-circuit”) can be pruned away while keep-
ing the MMAP problem equivalent. That is, remov-
ing an edge that is not in the solution sub-circuit will
not affect the probability of q? but may decrease the
probabilities of other assignments to Q; hence, q? re-
mains as the solution for marginal MAP problem in
the pruned circuit. Solving a MMAP instance by solv-
ing the equivalent problem on a pruned circuit can
have the following important benefits. First, the com-
plexity of inference algorithms on PCs generally de-
pends on the size of the circuit, and thus reducing the
size by pruning edges is desirable. In addition, be-
cause pruning as described above keeps the marginal
MAP probability while potentially decreasing other
marginal probabilities, it effectively increases the gap
between the solution and other states. This can not
only lead to more iterations of pruning, further spe-
cializing the circuit to the MMAP problem, but also
arguably make the problem easier to solve. For exam-
ple, in the extreme case that all edges other than the
solution sub-circuit are pruned, the resulting MMAP
problem becomes trivial to solve.

Given these benefits, we naturally raise the follow-
ing question: can we efficiently determine which edges
do not appear in the solution sub-circuit (i.e. q?-
subcircuit)? The challenge is to do this without know-
ing a priori the marginal MAP state q?. In the follow-
ing section, we propose an algorithm that efficiently
computes, for every edge, an upper bound on the out-
put of any sub-circuit that includes the edge, which
gives a positive answer to the previous question.

3.2 Edge Bounds

We will now define more formally our edge bounds and
the algorithm to efficiently compute them.

Definition Abusing notation, let us denote by
MMAP(Q|(n,c)) the largest marginal probability ob-
tainable by an assignment q whose q-subcircuit in-
cludes the edge (n, c). Formally,

MMAP(Q|(n,c)) := max
q:(n,c)∈C′q

C(q). (1)

Intuitively, this corresponds to a marginal MAP prob-
lem where the possible states have been reduced from
val(Q) to those that “activate” the edge (n, c) when
computing their marginal probability. Moreover, sup-
pose we define a hypothetical edge from the root to
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(b) PC before and after pruning. Sum edges are labeled with edge bounds.

Figure 1: A smooth and decomposable PC over variables {X1, X2, X3}. Orange sum nodes are Q-deterministic
for Q = {X1, X2}; blue edges form the sub-circuit for joint assignment q = {X1 = 1, X2 = 0}.

output, denoted (·, root). Then by definition, the
MMAP reduced to this edge, i.e. MMAP(Q|(·,root)) is

simply the MMAP problem MMAP(Q).

For each edge (n, c), we wish to obtain an edge bound
EB(n, c) that satisfies the following:

MMAP(Q|(n,c)) ≤ EB(n, c).

Let us also introduce EB for each node n, which may
be useful as intermediate quantities as will be apparent
later.

MMAP(Q|n) ≤ EB(n).

It is important to note that the edge bound EB(n, c)
is not a bound on some output from the edge or either
of the nodes connected by it. Rather, it bounds from
above the output of the PC at the root, using the edge
to limit the state space. Suppose we are given such
edge bound; clearly, if we also have a lower bound on
the marginal MAP probability, we can safely prune
any edge whose EB is smaller than the given lower
bound.

Computing the Edge Bound To develop an edge
bound with the properties described above, we first
observe that every q-subcircuit that includes an edge
(n, c) must also include the node n. Then, we can con-
clude that MMAP(Q|(n,c)) ≤ MMAP(Q|n). Suppose
we have an upper bound on the MMAP reduced to
node n. Such bound will also be at least as large as
the MMAP reduced to edge (n, c), and can be used as
edge bound EB(n, c). However, EB(n, c) need not be
as large as MMAP(Q|n), so there may be some oppor-
tunity to tighten the bound going from n to (n, c).

As a base case of the top-down recursion, we need an
upper-bound of MMAP at the root. For this, we use

the algorithm by Huang et al. (2006), shown in Algo-
rithm 1, which not only computes the upper-bound on
marginal MAP at the root node but also bounds the
output of every node, via a single feedforward pass on
the PC. Formally, for every node n ∈ C it computes
an upper bound on:

max
q:n∈C′q

n(q) = max
q∈val(Q)

n(q), (2)

and stores it in mn. Let us denote the upper-bound at
the root by mC .

Intuitively, our proposed edge bound EB(n, c) aims to
upper-bound the largest value returned by Algorithm 1
on a q-subcircuit that includes the edge (n, c). In other
words, for each edge (n, c), we bound from above the
following:

max
q:(n,c)∈C′q

mC′q ≥ MMAP(Q|(n,c)).

EB(n) then similarly upper-bounds MMAP(Q|n). It is
worth pointing out that this bounds the output at the
root for states q that includes n in their sub-circuits,
whereas mn by Algorithm 1 upper-bounds the output
at each node.

Let us now describe the recursive steps. First, suppose
we want to compute EB(n) where EB(p, n) for every
parent p of n (i.e. n ∈ ch(p)) has been computed by
the recursion. In order to make sure that EB(n) upper-
bounds the marginal MAP reduced to n, we observe
that if q is the solution to MMAP(Q|n) then the q-
subcircuit must also include one of the edges (p, n).
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Algorithm 1 Output-Bounds(C,Q)

Input: a smooth & decomposable PC C over variables
X and a set of query variables Q ⊂ X

Output: mn storing output bounds for each node n
1: N← FeedforwardOrder(C)
2: for each n ∈ N do
3: if n is an input unit then
4: mn ← Cmax

n (xφ(n))
5: else if n is a product unit then
6: mn ←

∏
c∈ch(n) mc

7: else if n is Q-deterministic then
8: mn ← maxc∈ch(n) θn,cmc

9: else
10: mn ←

∑
c∈ch(n) θn,cmc

Thus, EB(n) = maxp(EB(p, n)) is a valid edge bound:

max
p:n∈ch(p)

EB(p, n) ≥ max
p:n∈ch(p)

MMAP(Q|(p,n))

= MMAP(Q|n)

Next, suppose we wish to compute EB(n, c) from a
given EB(n). We consider the three possible cases
of n being a Q-deterministic sum node, a non Q-
deterministic sum node, and a product node. For the
latter two cases, the edge bounds are simply propa-
gated from the node. This is because any sub-circuit
that includes such node will also include both of its
input edges, and thus their bounds will be the same.

Finally, we consider the edge bound EB(n, c) for an in-
put edge to a Q-deterministic sum node. To illustrate
the intuition, we use the example PC in Figure 1a.
Suppose we want the edge bound between the root
and its right input, denoted EB(root, r). Running Al-
gorithm 1, we get the upper bound mroot = 0.558 at
the root and ml = 0.93 and mr = 0.84 for its left and
right input, respectively. Note that for every q that in-
cludes this edge in its sub-circuit,2 the marginal C(q)
must be 0.4 · r(q), leading to:

max
q:(root,r)∈C′q

C(q) = 0.4 · max
q:(root,r)∈C′q

r(q) ≤ 0.4 ·mr.

Thus, we can use 0.4 · mr = 0.336 as the edge bound
for (root, r). Similarly, we can derive the edge bound
for (root, l) as 0.6 ·ml = 0.558. This can be expressed
as:

EB(root, c) = EB(root)−mroot + θroot,cmc (3)

for any c ∈ ch(root). Note that this holds trivially
because EB(root) = mroot as the base case. However,

2This corresponds to {X1 = 0, X2 = 0} and {X1 =
0, X2 = 1}.

Algorithm 2 Edge-Bounds(C,Q)

Input: a smooth & decomposable PC C over variables
X and a set of query variables Q ⊂ X

Output: rn,c storing edge bounds for each edge (n, c)
1: m← Output-Bounds(C,Q)
2: troot ← 1
3: rroot ← mroot

4: N← BackwardOrder(C)
5: for each n ∈ N s.t. tn > 0, c ∈ ch(n) do
6: if n is a product unit then
7: rn,c ← rn
8: rc ← max(rc, rn,c)
9: tc ← min(tc, tn)

10: else if n is a sum unit then
11: if n is Q-deterministic then
12: rn,c ← rn + tn(θn,cmc −mn)
13: else
14: rn,c ← rn

15: rc ← max(rc, rn,c)
16: tc ← min(tc, θn,ctn)

we can generalize this to derive the expression for edge
bound from an inner Q-deterministic node.

Let us again use Figure 1a as an example; this time
we consider the blue dashed edge, denoting it (n, c).
Recall that EB(n, c) aims to upper-bound what Algo-
rithm 1 would return at the root of a q-subciruit that
includes edge (n, c). In such sub-circuit, (n, c) would
be the only input edge to node n, and thus the al-
gorithm would propagate up θn,cmc = 0.1 instead of
mn. This hints at a similar expression as Equation (3)
where we subtract the contribution of mn and add
θn,cmc. However, a key observation is that m bounds
from Algorithm 1 concern the output of each node,
whereas the edge bounds concern the output of the
root node. Thus, we need to consider how the contri-
bution of mn gets scaled when it is propagated up to
the root node. In this instance, it would be multiplied
by 0.7 · 0.6, which is the product of edge parameters
that lie in the path from n to the root. In other words,
we get the following expression:

EB(n, c) = EB(n) + 0.7 · 0.6(−mn + θn,cmc)

The pseudocode for this recursive algorithm is de-
scribed in Algorithm 2.

Proposition 1. Given a smooth and decomposable
PC C over variables X and a subset Q ⊂ X, Algo-
rithm 2 computes an upper bound on Equation (1) for
every edge in C.

Pruning example We refer to the Appendix for a
formal proof of the above proposition, and instead con-
clude this section with an example round of pruning.
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Suppose we wish to prune edges from the PC in Fig-
ure 1a, for an MMAP problem with Q = {X1, X2}.
First, we compute the edge bounds as shown in the
left circuit in Figure 1b. To perform pruning, we need
a lower bound on the marginal MAP probability to
compare against. The probability of any q ∈ val(Q)
state suffices; suppose we use q = {X1 = 0, X2 = 1}
with p(q) = 0.256. Then we can prune two edges,
resulting in the circuit on the right in Figure 1b.
More notably, all sum nodes in the resulting circuit
become Q-deterministic (highlighted in orange). In
particular, as we will discuss more in the next sec-
tion, this allows us to answer the marginal MAP query
via a single feedforward pass. Running Algorithm 1
on this PC, the output at the root is 0.378 which
exactly corresponds to the marginal MAP solution
p(X1 = 1, X2 = 1) = 0.378.

Thus, pruning not only has the immediate effect of
decreasing the circuit size, but also changes the PC
and its distribution in such a way that can make it
easier to solve the marginal MAP problem.

4 ITERATIVE MARGINAL MAP
SOLVER

We are now ready to show how the pruning algorithm
from the previous section can be leveraged to solve
marginal MAP exactly.

As discussed briefly in Section 2, we can tractably an-
swer a marginal MAP query for a Q-deterministic PC.
Thus, a naive solver may try to transform the input PC
into a Q-deterministic one to solve a marginal MAP
instance. For example, one could apply the split op-
eration (Liang et al., 2017; Dang et al., 2020) on the
root for each variable in Q. Splitting on a variable
Q ∈ Q effectively turns the root of the PC into a
Q-deterministic sum node while maintaining the dis-
tribution represented by it; thus, splitting on every
variable in Q would result in a Q-deterministic circuit.
However, this would be highly intractable as each split
operation could at most double the size of the PC.

Instead, we propose to prune the circuit as well as
split on a query variable in each iteration. While the
circuit could grow exponentially in the worst case, we
show empirically in the next section that pruning plays
a crucial role in indeed keeping the circuit size from
growing too much. In fact, in many instances, it de-
creases the circuit size over the iterations.

A pseudocode of our approach is shown in Algo-
rithm 3.3 The solver maintains an upper and lower
bound on marginal MAP and updates it after every

3Our marginal MAP solver is implemented in
https://github.com/Juice-jl/ProbabilisticCircuits.jl.

Algorithm 3 Iter-Solve(C,Q)

Input: a smooth & decomposable PC C over variables
X and a set of query variables Q ⊂ X

Output: MMAP(Q)
1: u← Output-Bounds(C,Q)
2: l← Lower-Bound(C,Q)
3: V← Q
4: while u > l do
5: r← Edge-Bounds(C,Q)
6: for all (n, c) ∈ C s.t. rn,c ≤ l do
7: C ← Prune-Edge(C, (n, c))
8: X ← Pick-Var(V); V← V \ {X}
9: C ← Split(C, X)

10: u← min(u,Output-Bounds(C,Q))
11: l← max(l,Lower-Bound(C,Q))

12: return u

prune and split. The upper bound is computed using
Algorithm 1 as discussed in Section 3.2. The marginal
probability of any instantiation of Q can be used as
a lower bound on the MMAP probability. In particu-
lar, we use the solution to a different MMAP instance
whose query variables include Q and can be solved ef-
ficiently; more details can be found in the Appendix.
In each iteration, we first prune all edges whose edge
bound, computed by Algorithm 2, does not exceed the
current lower bound. Then we split on a variable cho-
sen according to some heuristic (discussed further in
the next section). The solver is guaranteed to con-
verge after at most |Q| iterations, at which point the
PC must be Q-deterministic, allowing exact compu-
tation of MMAP. Furthermore, each prune and split
improves the bounds, and thus the solver may also
terminate before splitting on all query variables. That
is, pruning can decrease the upper bound as we saw
in Figure 1b, and a split operation also improves the
bounds by adding a new Q-deterministic node at the
root. Lastly, we again emphasize that our marginal
MAP solver only assumes smoothness and decompos-
ability; determinism is not required. For example, this
implies that we can also exactly solve MPE for non-
deterministic PCs.

5 EXPERIMENTS

We evaluated the iterative solver on probabilistic
circuits learned from twenty widely-used benchmark
datasets. The number of variables ranges from 16 to
1,556, and the size of PCs, learned using Strudel (Dang
et al., 2020), ranges from 3,177 to 745,815. We gener-
ated marginal MAP instances with two different pro-
portions of query, evidence, and hidden variables—
30%, 30%, 40% and 50%, 20%, 30%, respectively—
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Table 1: Average run time in seconds (with 1-hour time limit for each instance) and the number of instances
solved for different proportions of (query, evidence, hidden) variables.

(30%, 30%, 40%) (50%, 20%, 30%)
Dataset MaxSPN (Pruned) (UB) MaxSPN (Pruned) (UB)

NLTCS 0.004 (10) 0.35 (10) 0.54 (10) 0.01 (10) 0.39 (10) 0.63 (10)
MSNBC 0.01 (10) 0.29 (10) 0.50 (10) 0.03 (10) 0.43 (10) 0.73 (10)
KDD 0.02 (10) 0.42 (10) 0.64 (10) 0.04 (10) 0.49 (10) 0.68 (10)
Plants 0.27 (10) 0.99 (10) 1.36 (10) 2.95 (10) 2.61 (10) 2.72 (10)
Audio 188.59 (10) 16.57 (10) 2.87 (10) 2041.33 (6) 15.61 (10) 13.70 (10)
Jester 265.50 (10) 16.16 (10) 6.17 (10) 2913.04 (2) 44.16 (10) 14.74 (10)
Netflix 344.71 (10) 22.23 (10) 5.61 (10) – (0) 936.83 (10) 47.18 (10)
Accidents 0.54 (10) 2.00 (10) 2.00 (10) 109.56 (10) 19.81 (10) 15.86 (10)
Retail 0.03 (10) 0.47 (10) 0.61 (10) 0.06 (10) 0.67 (10) 0.81 (10)
Pumsb-star 273.70 (10) 106.04 (10) 6.04 (10) 2208.27 (7) 54.32 (10) 20.88 (10)
DNA 2809.44 (4) 65.27 (10) 9.16 (10) – (0) 2634.41 (3) 505.75 (9)
Kosarek 1.60 (10) 0.81 (10) 0.98 (10) 48.74 (10) 2.65 (10) 3.41 (10)
MSWeb 25.70 (10) 3.63 (10) 0.96 (10) 1543.49 (10) 48.89 (10) 1.28 (10)
Book – (0) 56.47 (10) 7.25 (10) – (0) 907.51 (9) 46.50 (10)
EachMovie – (0) 2563.02 (3) 93.66 (10) – (0) 3293.78 (1) 1216.89 (8)
WebKB – (0) 3378.03 (2) 102.37 (10) – (0) – (0) 575.68 (10)
Reuters-52 – (0) 1238.10 (7) 22.91 (10) – (0) 3107.57 (3) 120.58 (10)
20 NewsGrp. – (0) 2882.95 (3) 88.13 (10) – (0) – (0) 504.52 (9)
BBC – (0) – (0) 766.93 (9) – (0) – (0) 2757.18 (3)
Ad – (0) – (0) 344.81 (10) – (0) – (0) 1254.37 (8)

Total Solved 124 155 199 105 146 187

randomly dividing the variables and generating evi-
dence while ensuring its probability is nonzero. We
generated 10 instances for each dataset and each pro-
portion.

On each instance, we run our iterative solver with two
different variable split heuristics. (Pruned) selects vari-
ables based on the number of pruned edges associ-
ated with the variable; (UB) selects variables by the
expected change in upper bound after splitting on a
variable, which can be computed efficiently via a sin-
gle pass on the circuit. We refer to the Appendix for
a more detailed description of split heuristics and al-
gorithms to compute them. For comparison, we also
solved the marginal MAP problems using MaxSPN4

which is a search-based exact solver for (marginal)
MAP on sum-product networks (Mei et al., 2018). All
experiments were ran on a Intel(R) Xeon(R) Gold 5220
CPU @ 2.20GHz.

Table 1 summarizes the results. First, we compare the
two heuristics. (Pruned) is comparable or faster than
(UB) on relatively easy datasets, but is significantly
slower on most of the datasets. Moreover, (Pruned)

4Specifically, we use the forward checking technique
with ordering and stage, which was shown to be the best
performing among the exact solvers by Mei et al. (2018).

failed to solve any instance on BBC and Ad datasets,
whereas (UB) was able to solve at least one instance in
all datasets. In fact, it was able to solve all 20 instances
(10 for each proportion) on 15 out of the 20 datasets.
This clearly demonstrates the importance of variable
split heuristics and the benefit of explicitly choosing
splits that lead to better bounds.

Next, we compare our iterative solver to the search-
based approach of MaxSPN. We observe that MaxSPN
is faster than our algorithm on easy instances (sub-1
second average run time). This is likely because there
is a minimum overhead of performing circuit transfor-
mations. On the other hand, our iterative approach
clearly outperforms MaxSPN on all other datasets,
both in terms of average run time and the number
of instances solved.

Lastly, we examine more closely an example run of
our solver to empirically demonstrate the benefits of
pruning a PC for a specific marginal MAP problem;
see Figure 2. As we expected, iterative prune and
split improve the upper and lower bounds until they
converge. The next plot on circuit size clearly illus-
trates the importance of pruning the circuit. Even
though split operations can increase the circuit size,
we are very effective at pruning away irrelevant parts
of the circuit for MMAP that the circuit size actually
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Figure 2: Upper and lower bounds (top) and circuit
size (bottom) in each iteration of the solver on an ex-
ample instance on EachMovie dataset.

decreases over time. Indeed, the size at the point of
convergence is smaller than the initial size. Judging
by the rate of increase in the early iterations, it is
not hard to imagine that without pruning, the circuit
would quickly grow too large to run any inference.

6 CONCLUSION

We have introduced a novel approach to marginal
MAP inference on probabilistic circuits. It is fun-
damentally distinct from existing solvers, which are
based on a branch and bound search (Mauá et al.,
2020; Mei et al., 2018; Huang et al., 2006) using the
tractable circuit to prune the search. Instead, we
showed that the circuit can be pruned by keeping edges
that are relevant to the marginal MAP state. Fur-
thermore, our edge bounds algorithm can effectively
find such edges to prune. What remains to solve
marginal MAP is to perform simple splits on the cir-
cuit, tightening the bounds, and providing more op-
portunity to prune edges, until a marginal MAP solu-
tion is found. Our experiments empirically show that
this novel approach to marginal MAP outperforms the
search-based approach on a large number of real-world
learned probabilistic circuits.
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Supplementary Material:
Solving Marginal MAP Exactly by

Probabilistic Circuit Transformations

A In-depth Look at Circuit Pruning

A.1 q-subcircuit

We first formally define the notion of q-subcircuit used throughout the paper. This is expressed through the
notion of contexts.

Definition 3 (Context). Let C be a PC over variables X and n be one of its nodes. The context γn of node n
denotes all joint assignments that return a nonzero value for all nodes in a path between the root of C and n.

γn :=
⋃

p∈pa(n)

γp ∩ supp(n)

where pa(n) refers to the parent nodes of n and supp(n) := {x : Cn(x) > 0} is the support of node n. The
context γ(n,c) of an edge (n, c) is defined as γ(n,c) := γn ∩ γc.

Then for any q, an edge (n, c) is said to be in the q-subcircuit if q ∈ γ(n,c)
∣∣
Q

; i.e., the context of (n, c) reduced

to variables in Q contains the assignment q.

A.2 Proof of Proposition 1

Proposition 1. Given a smooth and decomposable PC C over variables X and a subset Q ⊂ X, Algorithm 2
computes an upper bound on Equation (1) for every edge in C.

To prove above proposition, let us define some auxiliary circuit structures. First, running Algorithm 1 to compute
m can be interpreted as a feedforward evaluation on a circuit obtained from C by replacing every Q-deterministic
sum node n with a node that simply returns the output of child node c = arg maxc∈ch(n) θn,cmc (i.e. they are
“fixed” to select the same branch as Line 7 in Algorithm 1). Suppose we unroll such circuit into a tree structure:
i.e. create copies of any node with multiple parents and recurse down. We denote this circuit by M. Then we
have mroot =M(∅), where M(∅) represents the circuit evaluation for marginal with no evidence. Moreover, for
any node n′ in M that corresponds to node n in C, written as n′ ∈ copy(n), we have mn =Mn′(∅).
In addition, for every node n′ in M, we define a circuit denoted M(n′) obtained from M by “fixing” the Q-
deterministic nodes that appear in the path from root to n′ such that they select the branch that reaches n′. In
other words, let Q′ be Q \ φ(n′) and q′ = γn′ |Q′ . Note that because M is a tree structure, every assignment in
the context of n′ has the same value for variables in Q′; this is given by the Q-deterministic sum nodes in the
path from n′ to the root which is unique. Then M(n′) is identical to M, except for the Q-deterministic nodes
that are ancestors of n′, which output the child node whose context agrees with q′.

Lemma 1. Let C be a PC over variables X and M be its tree-unrolled max-sum circuit (as described above)
for a set of query variables Q. For any M(n′) constructed from M as above, the following statements hold:

1. M(n′)(∅) =
∑

y∈val(X\Q)M(n′)(y).

2. For any q ∈ γn′ |Q, M(n′)(∅) ≥ C(q).

Note that above statements also apply to M =M(root). We now provide a proof of Proposition 1 using above
lemma, which we will prove at the end of this section.
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Proof. We will show that for every node n in C, Algorithm 2 returns

rn ≥ max
n′∈copy(n)

M(n′)(∅), (4)

and for every edge (n, c) it returns

rn,c ≥ max
(n′,c′)∈copy((n,c))

M(c′)(∅). (5)

Note that Equation 5 implies that rn,c upper-bounds the quantity MMAP(Q|(n,c)) given by Equation 1:

max
(n′,c′)∈copy((n,c))

M(c′)(∅) ≥ max
(n′,c′)∈copy((n,c))

max
q∈γc′ |Q

C(q) = max
(n′,c′)∈copy((n,c))

max
q∈ (γn′∩γc′ )|Q

C(q)

= max
q∈

⋃
(n′,c′)∈copy((n,c)) (γn′∩γc′ )|Q

C(q) = max
q∈ (γn∩γc)|Q

C(q) = max
q∈γ(n,c)|Q

C(q)

= max
q:(n,c)∈C′q

C(q) = MMAP(Q|(n,c))

We will now prove that Equations 4 and 5 hold by induction. For the base case, rroot is set as mroot, which is
exactly M(∅) =M(root)(∅).
Next, assume Equation 4 holds for a node n in C, and we want to show that Equation 5 holds for any of its input
edges (n, c). If n is a product unit or a sum unit that is not Q-deterministic, for any edge (n, c) and its copy
(n′, c′) the circuits M(n′) and M(c′) are identical by definition. Then Equation 5 holds as follows:

max
(n′,c′)∈copy((n,c))

M(c′)(∅) = max
(n′,c′)∈copy((n,c))

M(n′)(∅) = max
n′∈copy(n)

M(n′)(∅) ≤ rn = rn,c.

If n is a Q-deterministic sum node, the circuits M(n′) and M(c′) can differ only by whether node n′ is fixed to
take c′. Thus, for any y 6∈ γn′ |Y where Y = X \Q, M(n′)(y) =M(c′)(y). For y ∈ γn′ |Y, we have

M(n′)(y)−M(c′)(y) =
( ∏
θ∈path(n′)

θ
)
· M(n′)

n′ (y)−
( ∏
θ∈path(n′)

θ
)
· θn′,c′ · M(c′)

c′ (y)

where path(n′) denotes the set of all edge parameters that appear in the path from root to node n′. Note that

M(n′)
n′ , i.e. the subcircuit of M(n′) rooted at n′, is identical to Mn′ as the two max-sum circuits differ only in

the ancestors of n′. Similarly, M(c′)
c′ is equal to Mc′ . Then we can express the circuit evaluation of M(c′) as

M(c′)(∅) =
∑

y∈val(Y)

M(c′)(y) =
∑

y 6∈γn′ |Y

M(c′)(y) +
∑

y∈γn′ |Y

M(c′)(y)

=
∑

y 6∈γn′ |Y

M(n′)(y) +
∑

y∈γn′ |Y

M(c′)(y) =M(n′)(∅)−
∑

y∈γn′ |Y

M(n′)(y) +
∑

y∈γn′ |Y

M(c′)(y)

=M(n′)(∅) +

 ∏
θ∈path(n′)

θ

θn′,c′

∑
y∈γn′ |Y

Mc′(y)−
∑

y∈γn′ |Y

Mn′(y)


=M(n′)(∅) +

( ∏
θ∈path(n′)

θ
)

(θn′,c′Mc′(∅)−Mn′(∅)) =M(n′)(∅) +
( ∏
θ∈path(n′)

θ
)

(θn,cmc −mn)

Because mn ≥ θn,cmc, above equation among copies of (n, c) can be bounded from above by:

max
(n′,c′)∈copy((n,c))

M(c′)(∅) ≤ max
n′∈copy(n)

M(n′)(∅) +
(

min
n′∈copy(n)

∏
θ∈path(n′)

θ
)

(θn,cmc −mn) .

We will show that rn,c = rn + tn (θn,cmc −mn) (Line 12 in Algorithm 2) is at most the right-hand side quantity

of above inequality, thereby satisfying Equation 5. First, we have rn ≥ max(n′)∈copy(n)M(n′)(∅) by the inductive
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Algorithm 4 Lower-Bound(C,Q)

Input: a PC C over variables X and a set of query variables Q ⊂ X
Output: an assignment q ∈ val(Q)
1: N← FeedforwardOrder(C)
2: for each n ∈ N do
3: if n is an input unit then mn ← 1.0
4: else if n is a product unit then mn ←

∏
c∈ch(n) mc

5: else if n or its descendant is Q-deterministic then mn ← maxc∈ch(n) θn,cmc

6: else mn ←
∑
c∈ch(n) θn,cmc

7: return Extract-state(C,Q,m)

8: procedure Extract-state(n,Q,m)
9: if n is an input unit then

10: if Variable(n) ∈ Q then return {Literal(n)} else return {}
11: else if n is a product unit then
12: return

⋃
c∈ch(n) Extract-state(c,Q,m)

13: else
14: return Extract-state(arg maxc∈ch(n) θn,cmc,Q,m)

hypothesis. Next, we want to show that tn ≤ minn′∈copy(n)
∏
θ∈path(n′) θ. For a given node c, suppose this holds

for tn of every parent node n ∈ pa(c). Then we have

tc = min
n∈pa(c)

θn,ctn ≤ min
n∈pa(c)

θn,c

(
min

n′∈copy(n)

∏
θ∈path(n′)

θ
)

= min
c′∈copy(c)

∏
θ∈path(c′)

θ

For simplicity, we say θn,c = 1 for a product node n.

Finally, assume that Equation 5 holds for edges (p, n) where p ∈ pa(n), and we will show that Equation 4 must
hold then for node n. rn, which is set to maxp∈pa(n) rp,n in Algorithm 2, satisfies Equation 4 as follows:

max
p∈pa(n)

rp,n ≥ max
p∈pa(n)

max
(p′,n′)∈copy((p,n))

M(n′)(∅) = max
n′∈copy(n)

M(n′)(∅).

This concludes the proof of Proposition 1.

Proof of Lemma 1. To show property (1)M(n′)(∅) =
∑

y∈val(X\Q)M(n′)(y), first observe thatM(n′) fixes every
Q-deterministic node to always return the value of one of its children and thus can be simplified by removing
those nodes and directly connecting its parent to the appropriate child node. This results in a smooth and
decomposable PC with the normal types of sum and product nodes. Then (1) simply holds by the fact that
smooth and decomposable PCs allow marginal inference by feedforward evaluation.

Property (2)M(n′)(∅) ≥ C(q) holds for any q ∈ γn′ |Q if and only ifM(n′)(∅) ≥ C′q(∅), as computing the marginal
probability of q is equivalent to evaluating the q-subcircuit. Note that for any q ∈ γn′ |Q, the ancestor nodes of

n′ in M(n′) are equivalent to those in the q-subcircuit. On the other hand, M(n′)
n′ (∅) = Mn′(∅) upper bounds

maxq∈γn′ |Q n(q) (recall Equation (2)), hence must be at least n(q). Therefore, at the root nodes, M(n′) must

evaluate to at least C′q.

A.3 MMAP Lower Bound

As mentioned in Section 4, the solver maintains a lower bound on marginal MAP to be used for pruning. We now
describe the algorithm to compute the lower bound used in our iterative solver. First, note that the probability
of any assignment to query variables can be used as a lower bound for marginal MAP by definition. A simple and
common approach to approximate the marginal MAP state is to solve MPE instead and reduce the MPE state to
the query variables. We use a similar approach but with a key additional guarantee: after splitting on all query
variables, it exactly solves the marginal MAP problem. A pseudocode of our method is shown in Algorithm 4.
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Note the similarity of its feedforward pass to Algorithm 1: they both evaluate the circuit while replacing some
sum nodes to take the weighted maximum. However, our algorithm not only replaces the Q-deterministic sum
nodes but all of their ancestors as well. This is so that we can extract a state q by a backward pass, following
the edges that were selected by the weighted maximum. Moreover, if the input PC C is Q-deterministic, this
algorithm behaves the same as Algorithm 1 and exactly solves the MMAP problem.

B Split Heuristics

This section describes the two variable split heuristics that were evaluated in Section 5.

Using the (Pruned) heuristic, at every iteration we split on the query variable that had the most number of
associated edges pruned. In other words, for each query variable Q ∈ Q that is yet to be split on, we count how
many edges of a Q-deterministic sum node have been pruned (this value can be cached to minimize redundant
calculations) and choose the variable with the highest count. Intuitively, using this heuristic would tend to
minimize a size blow-up by each split.

On the other hand, (UB) aims to maximize opportunities for pruning in the iteration following each split. To
compute the heuristic, we first compute for each query variable Q ∈ Q the MMAP upper-bounds as described
in Algorithm 1, one setting Q = 0 as evidence and the other Q = 1. Because splitting the root on Q would
introduce a deterministic sum node whose children set Q to 0 and 1, these bounds equal the edge bounds on the
two input edges to the root after splitting. Let us denote these bounds BQ=0 and BQ=1 respectively, the lower
bound in the current iteration as lb, and the candidate query variables by Q′ ⊆ Q (i.e. query variables that have
not been split on in the previous iterations). Then the (UB) heuristic selects a variable as follows:{

arg minQ:min(BQ=0,BQ=1)<lb max(BQ=0, BQ=1) if ∃Q ∈ Q′ s.t. min(BQ=0, BQ=1) < lb,

arg minQ∈Q′ BQ=0 +BQ=1 otherwise.

In other words, if any variable would have a corresponding edge bound drop below the lower bound, we prioritize
selecting from those variables as this guarantees a large part of the circuit is pruned in the next iteration. Then
we choose the variable that would decrease the upper bound the most, which would, intuitively, result in more
edges being pruned in the next iteration. Note that computing this heuristic requires additional passes through
the PC, but as we showed empirically in Section 5, it makes pruning much more effective and the resulting solver
more efficient, despite the added time to compute the heuristic.


